Model-driven Autoscaling for Hadoop clusters
Anshul Gandhi (Stony Brook University); Parijat Dube, Andrzej Kochut, Li Zhang (IBM)

Problem

100

e Hadoop performance vulnerable to variations in cloud 100

75 | 1 node failure
at t=1000s
(2 — 1 nodes)

fails to meet |
SLO=600s

2nd job added
at t=120s
(2 — 1 nodes)

~J
&)

— Worker nodes can fail during job execution

fails to meet

— Resource contention in the cloud can dynamically impact progress SHOREES.

— Such variations lead to SLO violations if left unattended

Job progress (%) —
o
-

N
n

expected to finish by
SLO=3000s

Job progress (%) —
o
-

«— expected to finish by
SLO=600s

0

e Prior work: 0 1000 3000 6000 0 200 400 600 800
)]] . Time (s) — Time (s) —
— Mostly (ARIA, CRESP, Starfish) focuses on optimal static allocation (a) Node failure (b) Resource contention

— Others (KOALA, Jockey) rely on heuristics or complex simulations

Problem Statement: How to successfully
autoscale Hadoop while job is in progress

* How to accurately and dynamically resize Hadoop?

* How to estimate Hadoop resource requirements? * Model-driven approach to autoscaling
— Complex system, several metrics (200+ via Ganglia) 1. Develop workload-dependent performance models
— Workload- and data-dependent behavior — Closed-form expressions relating performance to
— Need a practical model relating resource allocation various parameters (resources, workload, Hadoop)
and performance (execution time) — Focus on few important parameters

* Cloud environment is very dynamic

| | 2. Leverage performance models for autoscaling
— Workload volume and mix are subject to change

— Keep track of %age input data processed

— Node failures, resource contention are common .
— Scale-out: Launch new VMs and start Hadoop services

— Need a dynamic solution

— Scale-in: Stop Hadoop services and remove VMs

Modeling Results Autoscaling Evaluation

— WordCount results on various Hadoop clusters

* WordCount: (T, ... map/red stage time)

y , . .
PITE — Autoscaling managed by simple reactive controller

D M
Tmap — (430M T 6)) N . | nms 100 —BHS? —AU’[DSQBNHQ 100 I—Base I—AutDScaling 100 —Base—AutOScal?ng
" " completes by/ completes by T completes by /
/ D D "R \ M i 2| SLO=600s l 75| SLO=3000s < 751 SLO=600s
T . = 5+O.5R+(6+O.7R)-(N 1] ‘N +O.1R < > Py
1 7)) 7! O t ling
\ re s Y, Eéﬂ 50 % 50 Eé” 50 mgger:;:’;;;gg
= = ol (1 — 3 nodes)
o 257 autoscaling triggered - 25+t - — |2 257
M (R) Number of Map (Reduce) tasks ST e S P avtoscaling tiggered | Nanao sddedat =120
- | — J Noaes | (2 - 1 - 3 nodes) 0 | e = TG
N_.(N,) |Number of Map (Reduce) configured cores 0, 00 000 500 %0 1000 3000 S000] 200 400 600 800
n..(n.) |Number of Map (Reduce) slots per core Time (s) — Time (s) — Time (s) —
D Size of input data, in GB (a) EC2 cluster (b) OpenStack Havana (c) OpenStack Icehouse
(simple scale-out) (failure recovery) (resource contention)
— (M/R) term for data movement in Shuffle
Lessons:
— Obtained via regression on training data * Simple analytical models can suffice for resource estimation
— Similar results for TeraSort and Kmeans Hadoop jobs can be dynamically autoscaled to meet SLOs
— Modeling error is about 4% (max 10%) o
Limitations:

* Preliminary results based on simple use-cases
e Need to address HDFS data movement

	Slide Number 1

