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— Worker nodes can fail during job execution
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— Resource contention in the cloud can dynamically impact progress SHOREES.

— Such variations lead to SLO violations if left unattended
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— Mostly (ARIA, CRESP, Starfish) focuses on optimal static allocation (a) Node failure (b) Resource contention

— Others (KOALA, Jockey) rely on heuristics or complex simulations

Problem Statement: How to successfully
autoscale Hadoop while job is in progress

* How to accurately and dynamically resize Hadoop?

* How to estimate Hadoop resource requirements? * Model-driven approach to autoscaling
— Complex system, several metrics (200+ via Ganglia) 1. Develop workload-dependent performance models
— Workload- and data-dependent behavior — Closed-form expressions relating performance to
— Need a practical model relating resource allocation various parameters (resources, workload, Hadoop)
and performance (execution time) — Focus on few important parameters

* Cloud environment is very dynamic

| | 2. Leverage performance models for autoscaling
— Workload volume and mix are subject to change

— Keep track of %age input data processed

— Node failures, resource contention are common .
— Scale-out: Launch new VMs and start Hadoop services

— Need a dynamic solution

— Scale-in: Stop Hadoop services and remove VMs

Modeling Results Autoscaling Evaluation

— WordCount results on various Hadoop clusters

* WordCount: (T, ... map/red stage time)

y , . .
PITE — Autoscaling managed by simple reactive controller
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D Size of input data, in GB (a) EC2 cluster (b) OpenStack Havana  (c) OpenStack Icehouse
(simple scale-out) (failure recovery) (resource contention)
— (M/R) term for data movement in Shuffle
Lessons:
— Obtained via regression on training data * Simple analytical models can suffice for resource estimation
— Similar results for TeraSort and Kmeans  Hadoop jobs can be dynamically autoscaled to meet SLOs
— Modeling error is about 4% (max 10%) o
Limitations:

* Preliminary results based on simple use-cases
e Need to address HDFS data movement
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