Towards a Comprehensive Performance Model of Virtual Machine Live Migration

Senthil Nathan, Umesh Bellur, Purushottam Kulkarni Department of Computer Science and Engineering, **IIT Bombay**

Problem Statement

Estimate migration time, downtime and network traffic accurately using parameters such as (1) VM's memory size (2) page dirtying characteristics (3) migration rate for pre-copy live migration

Need for a Performance Model

- → Which VM to be migrated?
- To migrate VM2 in 10 seconds, what migration rate R should we allocate?

Reasons for Error with Existing Models

Model for #dirtied pages failed to consider

- the #unique pages S dirtied per unit time.
- ▶ the #new pages S_{new} dirtied per unit time.
- \blacktriangleright the maximum writable working set size M_w .

Model for #skipped pages failed to consider

- ► the **#eligible** pages **E**; for skip technique.
- \blacktriangleright the impact of dirty rate S, S_{new} and migration rate R.

Other scenarios: Hardware Failure, Bug Fixing, Cloud Bursting

Research Contribution

Invalidated 8 existing models against 371 measured values (53) applications).

Table : Existing KVM Models

Table :	Existing	Xen	Models
---------	----------	-----	--------

Metrics	90th %ile Error
Migration time	46%
N/W traffic	1413 MB

Metrics 90th %ile Error Migration time **159%** 1839 MB N/W traffic

Identified 5 parameters that are fatally ignored by existing models.

Table : Proposed Model–KVM

Table : Proposed Model–Xen

Metrics	90th %ile Error
Migration time	13%

Metrics	90th %ile Erro
Migration time	19%

Proposed Model for #Dirtied Pages

$$\mathsf{D}_{\mathsf{i}} = \mathsf{min}(\mathsf{S} + (\mathsf{T}_{\mathsf{i}} - 1) \times \mathsf{S}_{\mathsf{new}}, \mathsf{M}_{\mathsf{w}})$$

Computation of S and S_{new}

N/W traffic 349 MB

434 MB N/W traffic

Calculate the average of averages and assign to S^{T}_{new}

What Parameter Need to be Modeled?

Inputs: $M \implies$ memory size, $R \implies$ Migration Rate

Iteration#	KVM Transfers	Xen Transfers
i = 1	all M #pages	effective pages, M—W_i # pages skipped
i ≥ 2	all dirtied pages D_{i-1}	effective dirtied pages, $D_{i-1} - W_i$

Parameters to be modeled

▶ #pages dirted **D**_i per iteration — For both KVM and Xen. \blacktriangleright #pages skipped W_i per iteration — Only for Xen.

Existing Model for #Dirtied Pages D_i

Proposed Model for #Skipped Pages

Di-1

Di

 M_w

#skipped = f(#eligible_pages, dirty rate, migration rate)

 $W_i = f(E_i, S, S_{new}, R)$

 $D_i = T_i \times S$

Key for S: Collect Dirty Bitmap Per Unit Time

Existing Computation Methods. average, exponential moving average, dirty probability, hot & cold pages, migration logs

Existing Model for #Skipped Pages W_i

$$W_i \propto D_{i-1}$$
 $W_i = \beta \times M$

Given \mathbf{D}_{i} , \mathbf{D}_{i-1} , \mathbf{T}_{i} , \mathbf{T}_{i-1}

= Union of Dirtied Pages Х

= Dirtied Pages $(T_i + T_{i-1})$ Х

 $E_{i} = (D_{i-1} + D_{i}) - X$