Forecasting the Cost of Processing Multi-join
Queries via Hashing for Main-memory Databases .. 110 srace

Fetllong Liu and Spyros Blanas

Key contribution

A cost model that accurately predicts
the response time of ad-hoc SQL
qgueries with multiple hash-based
joins on an in-memory database

Why is modeling necessary?

SELECT SUM(RO.a + R3.Db)
FROM RO, R1, R2, R3
WHERE RO.b=Rl.3a,
R1.b=R2.3a,
R2 .b=R3.a

Primary key-foreign key join between 4 tables:
|RO|=32GB, |R1|=8GB, |R2|=2GB, |R3|=512MB

R3

R2
Join operator
Hash table RO R1

Build side Probe side |

RO

R1

R3 R2

0 5 10 15
Response time (seconds)

Different query plans produce the same output,
but can have very different response time

Is a disk I/O model good enough?

Current approach: predict the response time of
different query plans using a disk /O model
» Each disk access is classified as either a sequential access

(ng) or a random access (n,.)
» Each access type is assigned its own cost ¢, or ¢,

Cost(Q) < n.-cs+n,-c,

Tuning for an in-memory setting:

» We use the PostgreSQL query optimizer and statistics to
obtain ng and n,

» With the observed response time from experiments, we
use linear regression to compute optimal costs ¢, and ¢,

Tuning the PostgreSQL disk model for memory

® Left ® Left Bushy ® Bushy @ Right Bushy @ Right
18
-~ 16 b4
&)
q) o
L 14 .
GE) RO
R1 ‘
.; 12 R3 R2 ‘
)
0p) r®
5 s -
S 10
V) .
lab) Query plans with
| - c
= 1.8x difference ° .
L 8 In response time < ® .
c are predicted to AN
2 have the same
O performance
O . RO
6 ‘o .
6 3 10 12 14 16 18

Model prediction (arbitrary units)

It IS not sufficient to tune traditional
disk 1/O models for main memory

Background: single join algorithm

Non-partitioned in-memory hash join

Hash table
Build side Blicket Bucket Probe side
R metadata payload S
_—7 header nextptr | tuple2 tuple5 N
____________ — scan —h header nextptr | tuplel h<+— scan <«
G header next ptr tup.le4 . T
............ L scan—& header nextptr | tuple3 tuple?7 P—scanl—
™\ header nextptr tuple6 y

Our memory I/O model

We develop a memory I/O model to predict the
response time of different hash-based multi-join
guery plans on an in-memory database

Our thesis: Response time Is dominated by
the cost of accessing main memory

» Each memory access is classified into one of the four types:

Read one cache line sequentially
Read one random cache line
Write one cache line sequentially
Write one random cache line

» For every access type, the model computes the number of
accesses N(SR), N(RR), N(SW) and N(RW)

» Each access type is assigned its own weight wep, Wpr, Weyy,
and Wpy,

Time(Q) < wgp + N(SR) + wgg - N(RR)
+ wey - N(SW) + wiy - N(RW)

Computing the weight w(-):
> We run microbenchmarks to calculate the relative cost of
each type of memory access

Calculating the number of accesses N(-):

» Only memory accesses leading to a last level cache miss
are taken into account; the model is oblivious to the multi-
level cache hierarchy and any NUMA effects

» The cardinality of the intermediate join results is assumed
to be known

» The memory access count of a query plan is the sum of the
memory access counts of all operators

» We model the build and probe phases of a join operation
separately

» In the hash join build phase, A
inserting into the hash table will
cause RW and SW activity >

» In the hash join probe phase,
probing the hash table will lead
to RR and SR activity)

See paper for
formulas

Left-deep tree vs. right-deep tree

Prior work in parallel
databases advocates

) R R,
right-deep trees: 07 y,
Rl Rn—l
» Hash tables can be R g
built concurrently R/ > Rn-1), . R, R,
-/ /

» Largest table is fed to

a single probe pipeline Right-deep tree

Processed concurrently

Left-deep tree
Processed sequentially

Experimental result Model prediction

o . s @10 . N
3 o-Left e Right I t= o-Left e Right °
~ 40 o S]
Q] > 8 []
g o © o
P ° = °
%30 3 2 6 >
5 < l
[)
%20 5 4 ®
(o) o O [
et ® © °
3 10 '’ 2 2 °
E : o0 0 0 0 00 0 0 0 00 "6 T o0 0 0 00 0 0 0 0 0 0V
2 oT B 0
@) 1 23 456 7 8 91011121314 a 1 2 3 45 6 7 8 91011121314

Number of joins Number of joins

Our model corroborates that the optimal left-
deep tree can be 8x faster than the optimal
right-deep tree for queries with more joins

UNIVERSITY

Adaptability to different hardware

Intel Xeon E5, 2 NUMA nodes, 24 cores

20 ® Left ® Left Bushy @ Bushy @ Right Bushy @ Right ,/" ° .
18 ,,,/ . ,/’,’
16 The two guery plans are - @
accurately predicted to N
14 have similar performance S
O
12 “ 20
6
y 4
o®

10 / I
’
s
’
'd

Observed response time (sec)

8
6| e, 1.00
T o 3.79
of .°
5%, ;.03
6.25
20 30 40 50 60
Model prediction (arbitrary units)
AMD Opteron, 4 NUMA nodes, 24 cores
8
® Left ® Left Bushy ® Bushy © Right Bushy @ Right e
)
7
—~ RR activity is significantly more ¢
3 expensive in the AMD system e
N 6 »
N’ ,/
GE) Our model accurately predicts that ¢
S . the bushy plan is 16% slower
O . .
@, 0,/"
Q. L o -
0 4 4 P
o L 8e
- ° °
b o 1
2 (R 1.00
’ 6.44
O +15%
1.88
l 8.42
3 4 5 6 7 8 9
Model prediction (arbitrary units)
Amazon EC2 c4.4xlarge, 16 vCPUs
6 p
® Left ® Left Bushy ® Bushy @ Right Bushy @ Right ‘/
> These query plans build a hash y
table on the largest table (R0) 4
A o®
°

The lack of huge
page support on the
c4.4xlarge instance

exacerbates the
overhead of virtual

memory address
translation

w

N

1.00

'd 'd
’ ’
’ ’
’ ’
, ,
P ,
’I 4 .
’ .’4
’

' ilS%’/’.l 5.21
e 13.86

Observed response time (sec)

4 6 3 10 12 14
Model prediction (arbitrary units)

The proposed model accurately predicts
response time and successfully adapts to
different hardware

Conclusions

» Our model accurately predicts the memory access
activity when evaluating ad-hoc multi-join queries

» For an in-memory database, the memory access
cost is an accurate proxy for query response time

» Sequential join evaluation can avoid
the cascading effect of cardinality mp

estimation errors and is a viable |y
in-memory query execution strategy E

