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A cost model that accurately predicts
the response time of ad-hoc SQL
queries with multiple hash-based
joins on an in-memory database

Background: single join algorithm

 Our model accurately predicts the memory access
activity when evaluating ad-hoc multi-join queries

 For an in-memory database, the memory access
cost is an accurate proxy for query response time

Conclusions
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Query  

SELECT SUM(R0.a + R3.b) 

FROM R0, R1, R2, R3

WHERE R0.b=R1.a, 

R1.b=R2.a, 

R2.b=R3.a

In-memory
database

Primary key-foreign key join between 4 tables:
|R0|=32GB, |R1|=8GB, |R2|=2GB, |R3|=512MB
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Different query plans produce the same output, 

but can have very different response time
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Why is modeling necessary?

Is a disk I/O model good enough?
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Model prediction (arbitrary units)

Tuning the PostgreSQL disk model for memory

Left Left Bushy Bushy Right Bushy Right

 Each disk access is classified as either a sequential access 
(𝑛𝑠) or a random access (𝑛𝑟)

 Each access type is assigned its own cost 𝑐𝑠 or 𝑐𝑟

𝐶𝑜𝑠𝑡 𝑄 ∝ 𝑛𝑠 ∙ 𝑐𝑠 + 𝑛𝑟 ∙ 𝑐𝑟

Tuning for an in-memory setting:
 We use the PostgreSQL query optimizer and statistics to 

obtain 𝑛𝑠 and 𝑛𝑟
 With the observed response time from experiments, we 

use linear regression to compute optimal costs 𝑐𝑠 and 𝑐𝑟

It is not sufficient to tune traditional 

disk I/O models for main memory
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Query plans with 

1.8× difference 

in response time 

are predicted to 

have the same 

performance
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Model prediction (arbitrary units)

Intel Xeon E5, 2 NUMA nodes, 24 cores
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±15%
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Model prediction (arbitrary units)

AMD Opteron, 4 NUMA nodes, 24 cores
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Model prediction (arbitrary units)

Amazon EC2 c4.4xlarge, 16 vCPUs
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The two query plans are 

accurately predicted to 

have similar performance

Adaptability to different hardware

The proposed model accurately predicts 

response time and successfully adapts to 

different hardware
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𝑅𝑅 activity is significantly more 

expensive in the AMD system

Our model accurately predicts that 

the bushy plan is 16% slower
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The lack of huge 

page support on the 

c4.4xlarge instance 

exacerbates the 

overhead of virtual 

memory address 

translation

These query plans build a hash 
table on the largest table (R0)
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Number of joins

Experimental result
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Number of joins

Model prediction
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Left-deep tree vs. right-deep tree

Our model corroborates that the optimal left-

deep tree can be 8× faster than the optimal 

right-deep tree for queries with more joins

Left-deep tree
Processed sequentially

𝑅𝑛 𝑅𝑛−1
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Right-deep tree
Processed concurrently

Prior work in parallel 
databases advocates 
right-deep trees:

Hash tables can be 
built concurrently

 Largest table is fed to 
a single probe pipeline
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Current approach: predict the response time of 
different query plans using a disk I/O model

Key contribution

Our memory I/O model

We develop a memory I/O model to predict the 
response time of different hash-based multi-join 
query plans on an in-memory database

Calculating the number of accesses 𝑁 ∙ :
 Only memory accesses leading to a last level cache miss 

are taken into account; the model is oblivious to the multi-
level cache hierarchy and any NUMA effects

 The cardinality of the intermediate join results is assumed 
to be known

 The memory access count of a query plan is the sum of the 
memory access counts of all operators

 We model the build and probe phases of a join operation 
separately

𝑺𝑹 Read one cache line sequentially

𝑹𝑹 Read one random cache line

𝑺𝑾 Write one cache line sequentially

𝑹𝑾 Write one random cache line

 For every access type, the model computes the number of 
accesses 𝑁 𝑆𝑅 , 𝑁 𝑅𝑅 , 𝑁 𝑆𝑊 and 𝑁(𝑅𝑊)

 Each access type is assigned its own weight 𝑤𝑆𝑅, 𝑤𝑅𝑅, 𝑤𝑆𝑊
and 𝑤𝑅𝑊

𝑇𝑖𝑚𝑒 𝑄 ∝ 𝑤𝑆𝑅 ∙ 𝑁 𝑆𝑅 + 𝑤𝑅𝑅 ∙ 𝑁 𝑅𝑅
+ 𝑤𝑆𝑊 ∙ 𝑁 𝑆𝑊 + 𝑤𝑅𝑊 ∙ 𝑁(𝑅𝑊)

 Each memory access is classified into one of the four types:

Our thesis: Response time is dominated by

the cost of accessing main memory

Computing the weight 𝑤(∙):
 We run microbenchmarks to calculate the relative cost of 

each type of memory access

 In the hash join build phase, 
inserting into the hash table will 
cause 𝑅𝑊 and 𝑆𝑊 activity

 In the hash join probe phase, 
probing the hash table will lead 
to 𝑅𝑅 and 𝑆𝑅 activity

See paper for 

formulas
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 Sequential join evaluation can avoid
the cascading effect of cardinality
estimation errors and is a viable
in-memory query execution strategy


