
Forecasting the Cost of Processing Multi-join

Queries via Hashing for Main-memory Databases
Feilong Liu and Spyros Blanas

A cost model that accurately predicts
the response time of ad-hoc SQL
queries with multiple hash-based
joins on an in-memory database

Background: single join algorithm

 Our model accurately predicts the memory access
activity when evaluating ad-hoc multi-join queries

 For an in-memory database, the memory access
cost is an accurate proxy for query response time

Conclusions

Hash table

Non-partitioned in-memory hash join

Build side Probe sideBucket

payload

Bucket

metadata

header next ptr tuple2 tuple5
header next ptr tuple1
header next ptr tuple4

header next ptr tuple3 tuple7
header next ptr tuple6

R
scan

scan

scan

h

h

h

S
scan

scan

scan

h

h

h

Query

SELECT SUM(R0.a + R3.b)

FROM R0, R1, R2, R3

WHERE R0.b=R1.a,

R1.b=R2.a,

R2.b=R3.a

In-memory
database

Primary key-foreign key join between 4 tables:
|R0|=32GB, |R1|=8GB, |R2|=2GB, |R3|=512MB

0 5 10 15

1

2

Response time (seconds)

Different query plans produce the same output,

but can have very different response time

R2

R3

R0 R1Hash table

Build side Probe side

Join operator

2.8× faster
R1

R0

R3 R2

Why is modeling necessary?

Is a disk I/O model good enough?

5

10

20

5 10 20

O
b
s
e

rv
e
d

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e
c
)

Model prediction (arbitrary units)

Tuning the PostgreSQL disk model for memory

Left Left Bushy Bushy Right Bushy Right

 Each disk access is classified as either a sequential access
(𝑛𝑠) or a random access (𝑛𝑟)

 Each access type is assigned its own cost 𝑐𝑠 or 𝑐𝑟

𝐶𝑜𝑠𝑡 𝑄 ∝ 𝑛𝑠 ∙ 𝑐𝑠 + 𝑛𝑟 ∙ 𝑐𝑟

Tuning for an in-memory setting:
 We use the PostgreSQL query optimizer and statistics to

obtain 𝑛𝑠 and 𝑛𝑟
 With the observed response time from experiments, we

use linear regression to compute optimal costs 𝑐𝑠 and 𝑐𝑟

It is not sufficient to tune traditional

disk I/O models for main memory

R1

R0

R3 R2

R1

R0

R2R3

R2

R3

R0R1

Query plans with

1.8× difference

in response time

are predicted to

have the same

performance

6 10 12 148 16 18

8

10

12

14

18

6

16

4

8

16

10000 20000 40000

O
b

se
rv

ed
 r

es
p

o
n

se
 t

im
e

(s
ec

)

Model prediction (arbitrary units)

Intel Xeon E5, 2 NUMA nodes, 24 cores

Left Left Bushy Bushy Right Bushy Right

±15%

20 30 40 50 60

20

18

16

14

12

10

8

6

2.25

4.5

2000 4000 8000

O
b
s
e

rv
e
d

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e
c
)

Model prediction (arbitrary units)

AMD Opteron, 4 NUMA nodes, 24 cores

Left Left Bushy Bushy Right Bushy Right

±15%

3 4 5 6 7 8 9

8

7

6

R2R3 R1 R0

3

1.1

2.2

4.4

2800 5600 11200

O
b
s
e

rv
e
d

 r
e

s
p

o
n

s
e

 t
im

e
 (

s
e
c
)

Model prediction (arbitrary units)

Amazon EC2 c4.4xlarge, 16 vCPUs

Left Left Bushy Bushy Right Bushy Right

±15%

4 6 8 10 12 14

6

5

4

3

2

The two query plans are

accurately predicted to

have similar performance

Adaptability to different hardware

The proposed model accurately predicts

response time and successfully adapts to

different hardware

𝒘𝑺𝑹 1.00

𝒘𝑹𝑹 3.79

𝒘𝑺𝑾 5.03

𝒘𝑹𝑾 6.25

𝒘𝑺𝑹 1.00

𝒘𝑹𝑹 6.44

𝒘𝑺𝑾 1.88

𝒘𝑹𝑾 8.42

𝒘𝑺𝑹 1.00

𝒘𝑹𝑹 6.81

𝒘𝑺𝑾 5.21

𝒘𝑹𝑾 13.86

R2R3 R1 R0

𝑅𝑅 activity is significantly more

expensive in the AMD system

Our model accurately predicts that

the bushy plan is 16% slower

4

5

The lack of huge

page support on the

c4.4xlarge instance

exacerbates the

overhead of virtual

memory address

translation

These query plans build a hash
table on the largest table (R0)

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14O
b
s
e
rv

e
d
 r

e
s
p
o
n

s
e
 t

im
e
 (

s
e
c
)

Number of joins

Experimental result

Left Right

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14P
re

d
ic

te
d
 c

o
s
t
(a

rb
it
ra

ry
 u

n
it
s
)

Number of joins

Model prediction

Left Right

Left-deep tree vs. right-deep tree

Our model corroborates that the optimal left-

deep tree can be 8× faster than the optimal

right-deep tree for queries with more joins

Left-deep tree
Processed sequentially

𝑅𝑛 𝑅𝑛−1

𝑅1

𝑅0

𝑅0𝑅1

𝑅𝑛−1

𝑅𝑛

Right-deep tree
Processed concurrently

Prior work in parallel
databases advocates
right-deep trees:

Hash tables can be
built concurrently

 Largest table is fed to
a single probe pipeline

7
.6

×
fa

st
e

r

7
.6

×
fa

st
e

r

Current approach: predict the response time of
different query plans using a disk I/O model

Key contribution

Our memory I/O model

We develop a memory I/O model to predict the
response time of different hash-based multi-join
query plans on an in-memory database

Calculating the number of accesses 𝑁 ∙ :
 Only memory accesses leading to a last level cache miss

are taken into account; the model is oblivious to the multi-
level cache hierarchy and any NUMA effects

 The cardinality of the intermediate join results is assumed
to be known

 The memory access count of a query plan is the sum of the
memory access counts of all operators

 We model the build and probe phases of a join operation
separately

𝑺𝑹 Read one cache line sequentially

𝑹𝑹 Read one random cache line

𝑺𝑾 Write one cache line sequentially

𝑹𝑾 Write one random cache line

 For every access type, the model computes the number of
accesses 𝑁 𝑆𝑅 , 𝑁 𝑅𝑅 , 𝑁 𝑆𝑊 and 𝑁(𝑅𝑊)

 Each access type is assigned its own weight 𝑤𝑆𝑅, 𝑤𝑅𝑅, 𝑤𝑆𝑊
and 𝑤𝑅𝑊

𝑇𝑖𝑚𝑒 𝑄 ∝ 𝑤𝑆𝑅 ∙ 𝑁 𝑆𝑅 + 𝑤𝑅𝑅 ∙ 𝑁 𝑅𝑅
+ 𝑤𝑆𝑊 ∙ 𝑁 𝑆𝑊 + 𝑤𝑅𝑊 ∙ 𝑁(𝑅𝑊)

 Each memory access is classified into one of the four types:

Our thesis: Response time is dominated by

the cost of accessing main memory

Computing the weight 𝑤(∙):
 We run microbenchmarks to calculate the relative cost of

each type of memory access

 In the hash join build phase,
inserting into the hash table will
cause 𝑅𝑊 and 𝑆𝑊 activity

 In the hash join probe phase,
probing the hash table will lead
to 𝑅𝑅 and 𝑆𝑅 activity

See paper for

formulas

R3

R0

R2 R1

R3

R0

R2 R1

 Sequential join evaluation can avoid
the cascading effect of cardinality
estimation errors and is a viable
in-memory query execution strategy

