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Key contribution

A cost model that accurately predicts
the response time of ad-hoc SQL
qgueries with multiple hash-based
joins on an in-memory database

Why is modeling necessary?

SELECT SUM(RO.a + R3.Db)
FROM RO, R1, R2, R3
WHERE RO.b=Rl.3a,
R1.b=R2.3a,
R2 .b=R3.a

Primary key-foreign key join between 4 tables:
|RO|=32GB, |R1|=8GB, |R2|=2GB, |R3|=512MB
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Different query plans produce the same output,
but can have very different response time

Is a disk I/O model good enough?

Current approach: predict the response time of
different query plans using a disk /O model
» Each disk access is classified as either a sequential access

(ng) or a random access (n,.)
» Each access type is assigned its own cost ¢, or ¢,

Cost(Q) < n.-cs+n,-c,

Tuning for an in-memory setting:

» We use the PostgreSQL query optimizer and statistics to
obtain ng and n,

» With the observed response time from experiments, we
use linear regression to compute optimal costs ¢, and ¢,

Tuning the PostgreSQL disk model for memory
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It IS not sufficient to tune traditional
disk 1/O models for main memory

Background: single join algorithm

Non-partitioned in-memory hash join
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Our memory I/O model

We develop a memory I/O model to predict the
response time of different hash-based multi-join
guery plans on an in-memory database

Our thesis: Response time Is dominated by
the cost of accessing main memory

» Each memory access is classified into one of the four types:

Read one cache line sequentially
Read one random cache line
Write one cache line sequentially
Write one random cache line

» For every access type, the model computes the number of
accesses N(SR), N(RR), N(SW) and N(RW)

» Each access type is assigned its own weight wep, Wpr, Weyy,
and Wpy,

Time(Q) < wgp + N(SR) + wgg - N(RR)
+ wey - N(SW) + wiy - N(RW)

Computing the weight w(-):
> We run microbenchmarks to calculate the relative cost of
each type of memory access

Calculating the number of accesses N(-):

» Only memory accesses leading to a last level cache miss
are taken into account; the model is oblivious to the multi-
level cache hierarchy and any NUMA effects

» The cardinality of the intermediate join results is assumed
to be known

» The memory access count of a query plan is the sum of the
memory access counts of all operators

» We model the build and probe phases of a join operation
separately

» In the hash join build phase, A
inserting into the hash table will
cause RW and SW activity >

» In the hash join probe phase,
probing the hash table will lead
to RR and SR activity )

See paper for
formulas

Left-deep tree vs. right-deep tree

Prior work in parallel
databases advocates

) R R,
right-deep trees: 07 y,
Rl Rn—l
» Hash tables can be R g
built concurrently R/ > Rn-1), . R, R,
-/ /

» Largest table is fed to

a single probe pipeline Right-deep tree

Processed concurrently

Left-deep tree
Processed sequentially

Experimental result Model prediction
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Our model corroborates that the optimal left-
deep tree can be 8x faster than the optimal
right-deep tree for queries with more joins
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Adaptability to different hardware

Intel Xeon E5, 2 NUMA nodes, 24 cores
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AMD Opteron, 4 NUMA nodes, 24 cores
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Amazon EC2 c4.4xlarge, 16 vCPUs
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The lack of huge
page support on the
c4.4xlarge instance

exacerbates the
overhead of virtual

memory address
translation
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The proposed model accurately predicts
response time and successfully adapts to
different hardware

Conclusions

» Our model accurately predicts the memory access
activity when evaluating ad-hoc multi-join queries

» For an in-memory database, the memory access
cost is an accurate proxy for query response time

» Sequential join evaluation can avoid
the cascading effect of cardinality mp

estimation errors and is a viable |y
in-memory query execution strategy E



