

CoolProvision: Underprovisioning Datacenter Cooling

Ioannis Manousakis, Thu D. Nguyen {ioannis.manousakis, tdnguyen}@cs.rutgers.edu

Design goals:

Sriram Sankar sriram@godaddy.com Inigo Goiri and Ricardo Bianchini {goiri, ricardob}@microsoft.com

Overview

Datacenter Cooling

 Traditional cooling accounts for 40% of construction costs High energy costs (location-dependent)

 Systematic way to reduce datacenter cooling within perf. constraints Trades capital costs, energy costs, hardware reliability and performance

Benefits:

Reduced capital costs and drastically improved NVPs Workload- and location-aware cooling deployments

Design

Architecture

Modular design

- Inputs
 - **High-level thermal models**
 - Historical weather (temp, RH%) **Expected workload profile** 3.

Workload Management Policies

- **Reduce server power and heat during** harsh conditions
 - **1.** High outside temperature
 - 2. High relative humidity
 - 3. High load
- Generic workloads \rightarrow DVFS
- Interactive and VMs \rightarrow Consolidation
- Deferrable analytics \rightarrow Job deferring

Optimization

- **Epoch based** optimization
- **Tunable horizon**
- Method: SQP

Implementation in **MATLAB (Simulator)**

cooler (Parasol)

Trained models with real small factor A/C and evaporative

- Server power models
- **Power performance trade-offs**

Outputs

- **Cheapest cooling technology**
- **Cheapest cooling size** 2.
- Constraints
 - **Upper inlet temperature and RH%**
 - Maximum workload degradation

Results

Four Representative Locations

ACM Symposium on Cloud Computing (SoCC 2015), August 27–29, 2015, Kohala Coast, HI, USA

