
ShardFS vs. IndexFS: Replication vs. Caching Strategies
for Distributed Metadata Management in Cloud Storage Systems

Scaling Metadata Service

Lin Xiao, Kai Ren, Qing Zheng, Garth Gibson
Carnegie Mellon University

• Big Data is lots of data and lots of files too
› Lots of files means lots of metadata operations

• Operation distribution from HDFS clusters
› open is the most common operation
› mkdir, chmod, remove are rare

System Designs

 Experiments
• 64 servers nodes & 64 clients nodes on Kodiak
• Balanced: 10 subdirs/internal dir, 1280 files/leaf dir
• Zipfian: same dirs, leaf dir size follows Zipfian distr
• Synthetic: generated based on Yahoo! trace by Mimesis
• Three phase benchmark

› Directory creation: create all directories
› File creation: create all files
› Query: stat on files with various distribution

Weak Scaling Workload
• Not all metadata operations scale as the system grows

› E.g. HPC checkpoint: one file per core
› Larger systems have more files in each directory

• Weak scaling workload
› File metadata ops scale while dir ops remain the same
› Replay LinkedIn trace with scaling file operations

• IndexFS-50ms/250ms
› IndexFS w/cache expire time as 50ms and 250ms
› Not scale when cache miss ratio is high

• ShardFS outperforms IndexFS with 128 servers
• ShardFS sees better stat latency at 70 percentile

c

/

2 31

a

b d

e

1 2

3

client /a/b/1

/a/c/2

ROOT

ROOT

ROOT

ROOT

0

320

640

960

1280

8 16 32 64 128

Th
ro

ug
hp

ut
 (K

op
/s)

Number of Servers

IndexFS-1s
IndexFS-250ms
IndexFS-50ms
ShardFS

256

512

1024

2048

4096

8192

16384

32768

65536

50 70 99

Re
sp

on
se

 T
im

e
(μ

s)

IndexFS-1s
IndexFS-250ms
IndexFS-50ms
ShardFS

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Fr
ac

tio
n

of
 T

ot
al

O
pe

ra
tio

ns

File System Operations
Mknod

Open
Chmod

RenameF
Mkdir

Readdir

Remove

LinkedIn
OpenCloud
Yahoo! PROD
Yahoo! R&D

STATOVERALL

c

/

2 3 1

a
b d

e
2 3

ROOT
/a
a/c

c/2

client
cache

1

• Dynamically partitioned namespace
 › Newly created directory is randomly assigned to a server
 › Binary splitting a directory partition using GIGA+ [FAST11]
• Use client caching of directory entries to mitigate hotspots

› Don’t want storms of cache invalidation callbacks
› Use leases with only expiration deadlines per directory
› Affect only rmdir, rename and chmod directory

• Represent metadata in log-structured merge tree for speed

Microbenchmark Results

• Clients create files in leaf directories
› ShardFS performs similar for all trees & load balanced
› IndexFS hurt by dir splitting and imbalanced load
› Giraffa rarely splits individual directories

• Stat on files with uniform distribution
› ShardFS benefits from load balance and one RPC
› IndexFS prefix cache not effective
• More server lookups and load imbalanced

0

4

8

12

16

20

Balanced
Tree

Zipfian Tree Synthetic
Tree

Tp
ut

 p
er

 N
od

e (
ko

p/
s) IndexFS ShardFS GiraffaFS

0

1

2

3

4

5

Balanced
Tree

Zipfian Tree Synthetic
Tree

RP
C

Am
pl

ifi
ca

tio
n IndexFS ShardFS GiraffaFS

0.00

0.15

0.30

0.45

0.60

0.75

Balanced
Tree

Zipfian Tree Synthetic
Tree

Lo
ad

 V
ar

ian
ce IndexFS ShardFS GiraffaFS

0

4

8

12

16

20

Balanced TreeZipfian Tree Synthetic Tree

Tp
ut

 p
er

 N
od

e (
ko

p/
s) IndexFS ShardFS GiraffaFS

0

1

2

3

4

5

Balanced Tree Zipfian Tree Synthetic Tree

RP
C

Am
pl

ifi
ca

tio
n IndexFS ShardFS GiraffaFS

0.00

0.15

0.30

0.45

0.60

0.75

Balanced TreeZipfian TreeSynthetic Tree

Lo
ad

 V
ar

ian
ce

IndexFS ShardFS GiraffaFS

IndexFS

• Replicate directory attributes & dirents for subdirectories
› Any MDS can resolve pathname locally
› Client only talks to one MDS for file operations
› Slower directory mutations, e.g. mkdir

• Shard files: by hash on pathname (or part of it)
› File metadata is only stored in one server

• Distributed transactions for directory metadata mutations
› Optimistic concurrency control
› Optimized monotonic mutations: reduce blocking
› Single RPC operations may retry when fail

ShardFS

c

/

2 3 1

a

b d

e

/a/c/2

/a/b/1

client

namespace
coprocessor

<h><d>/a/c/2
<h><d>/a/c/3

HBase
region server

<h><d>/a/ b/e
<h><d>/a/b/1

<h><d>/a

<h><d>/a/b
 …

Giraffa

• Table partitioned namespace: metadata is stored in HBase
› Each file and directory is mapped to one row with a

hash string and full path as the key
• Metadata operations implemented as coprocessor

› No hierarchical permission checks
• Related: CalvinFS stores permissions from root, dir

content as values for readdir, WAN replication

code available:
http://www.pdl.cmu.edu/indexfs

code available:
http://www.pdl.cmu.edu/ShardFS

