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Scaling Metadata Service

 Big Data is lots of data and lots of files too
» Lots of files means lots of metadata operations
 Operation distribution from HDFS clusters

e 64 servers nodes & 64 clients nodes on Kodiak
e Balanced: 10 subdirs/internal dir, 1280 files/leaf dir
o Zipfian: same dirs, leaf dir size follows Zipfian distr

> open Is the most common operation « Synthetic: generated based on Yahoo! trace by Mimesis
» mkdir, chmod, remove are rare + Three phase benchmark
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» ShardFS performs similar for all trees & load balanced
» IndexFS hurt by dir splitting and imbalanced load
» Giraffa rarely splits individual directories

 Dynamically partitioned namespace
> Newly created directory is randomly assigned to a server
> Binary splitting a directory partition using GIGA+ [FAST11]
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* More server lookups and load imbalanced
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* Replicate directory attributes & dirents for subdirectories
> Any MDS can resolve pathname locally

» Client only talks to one MDS for file operations Weak Scallng Workload

> Slower directory mutations, e.g. mkdir * Not all metadata operations scale as the system grows
e Shard files: by hash on pathname (or part of it) > E.g. HPC checkpoint: one file per core
» File metadata is only stored in one server » Larger systems have more files in each directory
» Distributed transactions for directory metadata mutations * Weak scaling workload
» Optimistic concurrency control » File metadata ops scale while dir ops remain the same
» Optimized monotonic mutations: reduce blocking > Replay LinkedIn trace with scaling file operations
» Single RPC operations may retry when fail
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hash string and full path as the key * IndexFS-50ms/250ms 07099
» Metadata operations implemented as coprocessor > IndexFS w/cache expire time as 50ms and 250ms
> No hierarchical permission checks > Not scale when cache miss ratio is hlgh
 Related: CalvinF$S stores permissions from root, dir * ShardFS outperforms IndexFS with 128 servers

content as values for readdir, WAN replication * ShardFsS sees better stat latency at 70 percentile




