ShardFS vs. IndexFS: Replication vs. Caching Strategies

for Distributed Metadata Management in Cloud Storage Systems
Lin Xiao, Kai Ren, Qing Zheng, Garth Gibson

Carnegie Mellon University

Scaling Metadata Service

 Big Data is lots of data and lots of files too
» Lots of files means lots of metadata operations
 Operation distribution from HDFS clusters

e 64 servers nodes & 64 clients nodes on Kodiak
e Balanced: 10 subdirs/internal dir, 1280 files/leaf dir
o Zipfian: same dirs, leaf dir size follows Zipfian distr

> open Is the most common operation « Synthetic: generated based on Yahoo! trace by Mimesis
» mkdir, chmod, remove are rare + Three phase benchmark
0.9 - S
P | I P > Directory creation: create all directories
~'§§ gg e e = Yahoo! PROD |- » File creation: create all files
§5 04 gl B > Query: stat on files with various distribution
0o 03 -
b 0.2 - _
o Microbenchmark Results

File System Operations - 20 5 . 0.75

\8'16 ® IndexFS = ShardFS ~ GiraffaFS S 4 W IndexFS = ShardFS GiraffaFS 8 160 ® IndexFS = ShardFS GiraffaFS
= < | s] s VY
System Designs 2 - fos |
/ % R £ 2 [———gar——------gar----------aar—- T 030 [
IndeXFS ® ROOT §' 4 B - I ———————————————— § 1 Femem ———mmam -————I |3 015 - g

- . 3 — | B 2 0 B 0 J . 0.00 = - I
code available: client ///a/c Balanced Zipfian Tree Synthetic Balanced Zipfian Tree Synthetic Balanced Zipfian Tree Synthetic
http://www.pdl.cmu.edu/indexfs b_d |, C - Tree Tree Tree Tree Tree Tree
5 o * Clients create files in leaf directories

» ShardFS performs similar for all trees & load balanced
» IndexFS hurt by dir splitting and imbalanced load
» Giraffa rarely splits individual directories

 Dynamically partitioned namespace
> Newly created directory is randomly assigned to a server
> Binary splitting a directory partition using GIGA+ [FAST11]

. . " . mngm 0.75
 Use client caching of directory entries to mitigate hotspots Q3 [aindexFs - ShardFS GiraffaFS =j % IndexFS © ShardFS ~ GiraffaF'S oo | ®IndexFS - ShardFS GiraffaFS
o L = L
» Don’t want storms of cache invalidation callbacks P N R S, S s lowg W
: T : : k= s S
» Use leases with only expiration deadlines per directory e T £ = 030 [
. . S O S
» Affect only rmdir, rename and chmod directory s 4 r B . N 2 015 -]
. S 0 0.00
° Represent metadata 1 Iog-StrUCtured merge tree for Speed Balanced Tree Zipfian Tree Synthetic Tree Balanced Tree Zipfian Tree Synthetic Tree Balanced TreeZipfian TreeSynthetic Tree
R Y D . . . - g .
ShardFS g [client]\’a’b“ Fi% % o Stat on files with uniform distribution
code available: a > ShardFS benefits from load balance and one RPC

http://lwww.pdl.cmu.edu/ShardFS

* More server lookups and load imbalanced

& AN Y
c \ ”R;;i\\i%“ » IndexFS prefix cache not effective
lalcl2
"

* Replicate directory attributes & dirents for subdirectories
> Any MDS can resolve pathname locally

» Client only talks to one MDS for file operations Weak Scallng Workload

> Slower directory mutations, e.g. mkdir * Not all metadata operations scale as the system grows
e Shard files: by hash on pathname (or part of it) > E.g. HPC checkpoint: one file per core
» File metadata is only stored in one server » Larger systems have more files in each directory
» Distributed transactions for directory metadata mutations * Weak scaling workload
» Optimistic concurrency control » File metadata ops scale while dir ops remain the same
» Optimized monotonic mutations: reduce blocking > Replay LinkedIn trace with scaling file operations
» Single RPC operations may retry when fail
. g p /y ry namespace 1280 OVERALL 65536 STAT
Giraffa o coprocessor (R, V(T @ | —e-IndexFS-1s 32768 1 - nderFS.250ms |-
T e)| § w0 Trnm g e -
\ Q JQ 2 ,\S— -| —@—ShardF$S 2 310)
b (B (3 8 640 AT |
‘<h><d>/a/ ble ‘ h><d>/a | %‘ ““““““““““““““““ E 4096 -
€ regionl;lzre\l/z(iﬂ Ch><d>/a/b/1 AN 4 E 320 ::""“:_ §_ 2048 -
» Table partitioned namespace: metadata is stored in HBase 0 ” - ” oe AT
. . . . 012 g -
» Each file and directory is mapped to one row with a Number of Servers 256] I
hash string and full path as the key * IndexFS-50ms/250ms 07099
» Metadata operations implemented as coprocessor > IndexFS w/cache expire time as 50ms and 250ms
> No hierarchical permission checks > Not scale when cache miss ratio is hlgh
 Related: CalvinF$S stores permissions from root, dir * ShardFS outperforms IndexFS with 128 servers

content as values for readdir, WAN replication * ShardFsS sees better stat latency at 70 percentile

