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• Big Data is lots of data and lots of files too
› Lots of files means lots of metadata operations

• Operation distribution from HDFS clusters
› open is the most common operation
› mkdir, chmod, remove are rare

System Designs

 Experiments
• 64 servers nodes & 64 clients nodes on Kodiak
• Balanced: 10 subdirs/internal dir, 1280 files/leaf dir
• Zipfian: same dirs, leaf dir size follows Zipfian distr
• Synthetic: generated based on Yahoo! trace by Mimesis
• Three phase benchmark

› Directory creation: create all directories
› File creation: create all files
› Query: stat on files with various distribution

Weak Scaling Workload
• Not all metadata operations scale as the system grows

› E.g. HPC checkpoint: one file per core
› Larger systems have more files in each directory

• Weak scaling workload
› File metadata ops  scale while dir ops remain the same
› Replay LinkedIn trace with scaling file operations

• IndexFS-50ms/250ms
› IndexFS w/cache expire time as 50ms and 250ms
› Not scale when cache miss ratio is high

• ShardFS outperforms IndexFS with 128 servers
• ShardFS sees better stat latency at 70 percentile
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• Dynamically partitioned namespace
    › Newly created directory is randomly assigned to a server
 › Binary splitting a directory partition using GIGA+ [FAST11]
•  Use client caching of directory entries to mitigate hotspots

› Don’t want storms of cache invalidation callbacks
› Use leases with only expiration deadlines per directory
› Affect only rmdir, rename and chmod directory

• Represent metadata in log-structured merge tree for speed

Microbenchmark Results

• Clients create files in leaf directories
› ShardFS performs similar for all trees & load balanced
› IndexFS hurt by dir splitting and imbalanced load
› Giraffa rarely splits  individual directories 

• Stat on files with uniform distribution
› ShardFS benefits from load balance and one RPC
› IndexFS prefix cache not effective
• More server lookups and load imbalanced 
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IndexFS

• Replicate directory attributes & dirents for subdirectories
› Any MDS can resolve pathname locally
› Client only talks to one MDS for file operations
› Slower directory mutations, e.g. mkdir

• Shard files: by hash on pathname (or part of it)
› File metadata is only stored in one server

• Distributed transactions for directory metadata mutations
› Optimistic concurrency control 
› Optimized monotonic mutations: reduce blocking
› Single RPC operations may retry when fail

ShardFS
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Giraffa

• Table partitioned namespace: metadata is stored in HBase 
› Each file and directory is mapped to one row with a 

hash string and full path as the key
• Metadata operations implemented as coprocessor

› No hierarchical permission checks
• Related: CalvinFS stores permissions from root, dir 

content as values for readdir, WAN replication

code available:
http://www.pdl.cmu.edu/indexfs

code available:
http://www.pdl.cmu.edu/ShardFS


