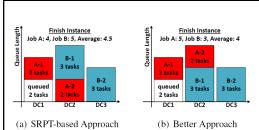
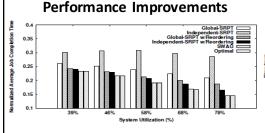

Scheduling Jobs Across Geo-distributed Datacenters

Chien-Chun Hung, Leana Golubchik, Minlan Yu

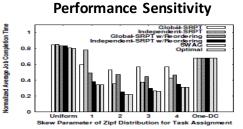

Motivation and System Architecture

- Tasks of the jobs are distributed across the datacenters for data locality to save bandwidth and completion time.
- The imbalance in tasks distribution and the workloads at each datacenters necessitate new scheduling techniques.

Job ID	Arrival Sequence	#Remaining Tasks in DC1	#Remaining Tasks in DC2		Total #Remaining Tasks
Α	1	1	10	1	12
В	2	3	8	0	11
С	3	7	0	6	13



Reordering-based Scheduling Approach


- ✓ Serve as a post-processing adjustment to improve any scheduling results.
- ✓ Yield the resources to other tasks if not hurting its job's overall completion time.
- ✓ Provably do no harm to the average job completion time for any job scheduling.

Workload-Aware Greedy Scheduling (SWAG)

- ✓ A generic scheduling solution that computes the job order for all the jobs.
- ✓ Prioritize the jobs based on estimated finish times along with current workload.
- ✓ Greedily schedule the job that can finish quickly across all the datacenters.

Fairness 1.7 1.6 1.5

- ★ SWAG and Reordering result in a significant performance improvement, up to 50% and 30% respectively, over SRPT-based scheduling.
- ★ SWAG and Reordering improve average job completion time while maintaining reasonable fairness, even for the large jobs, compared to SRPT-based scheduling.
- ★ The biggest improvements are observed when the system is highly-loaded or there exists a high skew in workload, either in job sizes or in task assignments.
- ★ Without workload skew or in lightly-loaded systems, SWAG and Reordering exhibit similar performance compared to SRPT-based scheduling.

Summary and Extensions

- SWAG vs. Reordering
 - -SWAG provides greater improvements with reasonable overhead. -Reordering is light-weight and easily added to any scheduling approach. ● Flow scheduling for intermediate data shuffling
- Heterogeneous datacenter capacity (#slots)
- Scheduling jobs with DAG of tasks