
 Each VM’s workload can be modeled as an IO pattern. 
 Given a particular IO pattern, it corresponds  a saturation throughput 𝑃𝑖.  
 𝑃𝑖refers to the theoretical IO throughput that a VM could receive in isolation. 
 𝑃𝑖  is directly related to T -- 𝑃𝑖  refers to full utilization which is T. 
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Motivation 
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Fig. Varying IO concurrency (OIO #). Fig. Varying IO size. 
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Fig. Native vs virtualization setup.  

Observation: Low IO-concurrency 
workloads receive unfair service times. 

Overview 
Problem  
 An IO scheduler, providing fairness and isolation while maintaining high resource utilization, 

regardless of IO patterns becomes imperative. 

 A fine-grained service-time based allocation model. 
 Three scheduling strategies balancing fairness and efficiency. 
 A two-level scheduling architecture for realizing the model and 

scheduling strategies. 

vFair Overview 

Per-IO Cost Allocation Model 
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Proportional Service Time Allocation 

Key Idea – to use saturation throughput 𝑷𝒊 

Fig. Saturated IOPS performance vs. IO 
request sizes for a single SSD 

Model Approximation – to obtain 𝑷𝒊 

1/𝑃𝑖 = 𝛼 ∙ 𝛽/𝑃𝑠𝑒𝑞_𝑟𝑑+ 𝛼 ∙(1- 𝛽)/𝑃𝑟𝑎𝑛𝑑_𝑟𝑑 

          +  (1- 𝛼) ∙ 𝛾/𝑃𝑠𝑒𝑞_𝑤𝑟+(1- 𝛼) ∙ (1 − 𝛾)/𝑃𝑟𝑎𝑛𝑑_𝑤𝑟 

Scheduling Strategy & Two-level Architecture 

 Posterior Knowledge: VM’s runtime IO access pattern -- 𝛼, 𝛽 and 𝛾. 
 Prior knowledge: Basic IO pattern’s 𝑃𝑖, constructed offline -- 𝑃𝑠𝑒𝑞_𝑟𝑑, 

𝑃𝑟𝑎𝑛𝑑_𝑟𝑑, 𝑃𝑠𝑒𝑞_𝑤𝑟 and 𝑃𝑟𝑎𝑛𝑑_𝑤𝑟. 

Fig. VM1 and VM2 should each obtain 
50% of the shared storage throughput. 

Evaluation 

Fig. The total saturation performance becomes 
P1+2 = 1200 (the worst case).  
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 BOPS does not take blender effect into account. 
 BAPS ensures high efficiency with best-effort fairness 

guarantees. 
 BSPS ensures the best fairness guarantees. 

Micro-Benchmark 

SFQ(mClock) BAPS(vFair) 
Fig. Throughput (IOPS) distribution among three VMs running workloads with random IOs with various Isizes. 

Application Workloads 

Fig. Application-level throughput (trans/second) comparisons of three schedulers using 

Sysbench PostMark DVD Store 

 vFair provides very good fairness for low IO-concurrency workloads. 

 vFair improves fairness of storage IO scheduling by an order of magnitude. 
 vFair isolates throughput of different VMs and achieves the specified 

proportional fair shares. 

Fig. An illustration of unfairness. 

Fig. Architecture of vFair.  
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In practice, it is NOT 
possible to accurately 
measure the service time. 

Due to IO-blender effect, using static 
𝑃𝑖  to estimate storage capacity would 
become imprecise over time. 

Scheduling Strategy Fairness Guarantee Work-conserving? High Utilization?

BOPS(vFair) Good Yes Yes

BAPS(vFair) Better Yes Yes

BSPS(vFair) Best Yes No

PS(mClock) Good Yes Yes

CFQ(Linux) Bad No No
Time-Quanta 

based scheduler Best No No

 First level: Credit-based IO Rate Controller  
 Second level: Faire queuing scheduling SFQ(D) 

Realization? 

Root cause: The arrival of 
synchronous IO requests can 
be greatly  delayed by 
asynchronous IOs. 

𝑃1= 8000  
average length = 16 KB 
average latency = 10 ms 

𝑃2= 1200  
average length = 128 KB 
average latency = 10 ms 

𝑃1_alloct = 𝑃1/2 = 4000  
𝑃2_alloct = 𝑃2/2 = 600  
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