
 Each VM’s workload can be modeled as an IO pattern. 
 Given a particular IO pattern, it corresponds  a saturation throughput 𝑃𝑖.  
 𝑃𝑖refers to the theoretical IO throughput that a VM could receive in isolation. 
 𝑃𝑖  is directly related to T -- 𝑃𝑖  refers to full utilization which is T. 

vFair: Latency-Aware Fair Storage Scheduling via Per-IO 
Cost-Based Differentiation   

Hui Lu† , Brendan Saltaformaggio† , Ramana Kompella†‡ , Dongyan Xu†  
†Department of Computer Science, Purdue University, ‡Google Inc.  

Motivation 
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Fig. Varying IO concurrency (OIO #). Fig. Varying IO size. 
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Fig. Native vs virtualization setup.  

Observation: Low IO-concurrency 
workloads receive unfair service times. 

Overview 
Problem  
 An IO scheduler, providing fairness and isolation while maintaining high resource utilization, 

regardless of IO patterns becomes imperative. 

 A fine-grained service-time based allocation model. 
 Three scheduling strategies balancing fairness and efficiency. 
 A two-level scheduling architecture for realizing the model and 

scheduling strategies. 

vFair Overview 

Per-IO Cost Allocation Model 
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Proportional Service Time Allocation 

Key Idea – to use saturation throughput 𝑷𝒊 

Fig. Saturated IOPS performance vs. IO 
request sizes for a single SSD 

Model Approximation – to obtain 𝑷𝒊 

1/𝑃𝑖 = 𝛼 ∙ 𝛽/𝑃𝑠𝑒𝑞_𝑟𝑑+ 𝛼 ∙(1- 𝛽)/𝑃𝑟𝑎𝑛𝑑_𝑟𝑑 

          +  (1- 𝛼) ∙ 𝛾/𝑃𝑠𝑒𝑞_𝑤𝑟+(1- 𝛼) ∙ (1 − 𝛾)/𝑃𝑟𝑎𝑛𝑑_𝑤𝑟 

Scheduling Strategy & Two-level Architecture 

 Posterior Knowledge: VM’s runtime IO access pattern -- 𝛼, 𝛽 and 𝛾. 
 Prior knowledge: Basic IO pattern’s 𝑃𝑖, constructed offline -- 𝑃𝑠𝑒𝑞_𝑟𝑑, 

𝑃𝑟𝑎𝑛𝑑_𝑟𝑑, 𝑃𝑠𝑒𝑞_𝑤𝑟 and 𝑃𝑟𝑎𝑛𝑑_𝑤𝑟. 

Fig. VM1 and VM2 should each obtain 
50% of the shared storage throughput. 

Evaluation 

Fig. The total saturation performance becomes 
P1+2 = 1200 (the worst case).  
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 BOPS does not take blender effect into account. 
 BAPS ensures high efficiency with best-effort fairness 

guarantees. 
 BSPS ensures the best fairness guarantees. 

Micro-Benchmark 

SFQ(mClock) BAPS(vFair) 
Fig. Throughput (IOPS) distribution among three VMs running workloads with random IOs with various Isizes. 

Application Workloads 

Fig. Application-level throughput (trans/second) comparisons of three schedulers using 

Sysbench PostMark DVD Store 

 vFair provides very good fairness for low IO-concurrency workloads. 

 vFair improves fairness of storage IO scheduling by an order of magnitude. 
 vFair isolates throughput of different VMs and achieves the specified 

proportional fair shares. 

Fig. An illustration of unfairness. 

Fig. Architecture of vFair.  
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In practice, it is NOT 
possible to accurately 
measure the service time. 

Due to IO-blender effect, using static 
𝑃𝑖  to estimate storage capacity would 
become imprecise over time. 

Scheduling Strategy Fairness Guarantee Work-conserving? High Utilization?

BOPS(vFair) Good Yes Yes

BAPS(vFair) Better Yes Yes

BSPS(vFair) Best Yes No

PS(mClock) Good Yes Yes

CFQ(Linux) Bad No No
Time-Quanta 

based scheduler Best No No

 First level: Credit-based IO Rate Controller  
 Second level: Faire queuing scheduling SFQ(D) 

Realization? 

Root cause: The arrival of 
synchronous IO requests can 
be greatly  delayed by 
asynchronous IOs. 

𝑃1= 8000  
average length = 16 KB 
average latency = 10 ms 

𝑃2= 1200  
average length = 128 KB 
average latency = 10 ms 

𝑃1_alloct = 𝑃1/2 = 4000  
𝑃2_alloct = 𝑃2/2 = 600  
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