
 Each VM’s workload can be modeled as an IO pattern.
 Given a particular IO pattern, it corresponds a saturation throughput 𝑃𝑖.
 𝑃𝑖refers to the theoretical IO throughput that a VM could receive in isolation.
 𝑃𝑖 is directly related to T -- 𝑃𝑖 refers to full utilization which is T.

vFair: Latency-Aware Fair Storage Scheduling via Per-IO
Cost-Based Differentiation

Hui Lu† , Brendan Saltaformaggio† , Ramana Kompella†‡ , Dongyan Xu†
†Department of Computer Science, Purdue University, ‡Google Inc.

Motivation

0.E+00

1.E+04

2.E+04

3.E+04

4.E+04

Async OIO = 1 Async OIO = 8 Async OIO = 32

IO
P

S
(c

o
u

n
ti

n
g

u
n

it
 =

 4
K

B
) 4 KB Synchronous

Sequential Read (OIO=1)

4 KB Asynchronous
Random Read

Fig. Varying IO concurrency (OIO #). Fig. Varying IO size.

0.E+00

2.E+04

4.E+04

6.E+04

8.E+04

Async IO size =
4 KB

Async IO size =
32 KB

Async IO size =
128 KB

IO
P

S
(c

o
u

n
ti

n
g

u
n

it
 =

 4
K

B
) 4 KB Synchronous

Sequential Read (OIO=1)
Asynchronous Random
Read (OIO=8)

0.E+00

2.E+04

4.E+04

6.E+04

Native Virtualization (no-
sched)

Virtualization
(sched)

IO
P

S
(c

o
u

n
ti

n
g

u
n

it
 =

 4
K

B
)

4 KB Synchronous
Sequential Read (OIO=1)

32 KB Asynchronous
Random Read (OIO = 8)

Fig. Native vs virtualization setup.

Observation: Low IO-concurrency
workloads receive unfair service times.

Overview
Problem
 An IO scheduler, providing fairness and isolation while maintaining high resource utilization,

regardless of IO patterns becomes imperative.

 A fine-grained service-time based allocation model.
 Three scheduling strategies balancing fairness and efficiency.
 A two-level scheduling architecture for realizing the model and

scheduling strategies.

vFair Overview

Per-IO Cost Allocation Model

0

5,000

10,000

15,000

20,000

25,000

30,000

0 200 400 600

IO
P

S
(P

t)

IO Request Size

IOPS (Sequential Read)

IOPS (Random Read)

IOPS (Sequential Write)

IOPS (Random Write)

𝑇𝑖 =
𝑤𝑖

 𝑤𝑘𝑘

𝑇

𝑇𝑖 = 𝑓(
𝑤𝑖

 𝑤𝑘𝑘

∙ 𝑃𝑖)

Proportional Service Time Allocation

Key Idea – to use saturation throughput 𝑷𝒊

Fig. Saturated IOPS performance vs. IO
request sizes for a single SSD

Model Approximation – to obtain 𝑷𝒊

1/𝑃𝑖 = 𝛼 ∙ 𝛽/𝑃𝑠𝑒𝑞_𝑟𝑑+ 𝛼 ∙(1- 𝛽)/𝑃𝑟𝑎𝑛𝑑_𝑟𝑑

 + (1- 𝛼) ∙ 𝛾/𝑃𝑠𝑒𝑞_𝑤𝑟+(1- 𝛼) ∙ (1 − 𝛾)/𝑃𝑟𝑎𝑛𝑑_𝑤𝑟

Scheduling Strategy & Two-level Architecture

 Posterior Knowledge: VM’s runtime IO access pattern -- 𝛼, 𝛽 and 𝛾.
 Prior knowledge: Basic IO pattern’s 𝑃𝑖, constructed offline -- 𝑃𝑠𝑒𝑞_𝑟𝑑,

𝑃𝑟𝑎𝑛𝑑_𝑟𝑑, 𝑃𝑠𝑒𝑞_𝑤𝑟 and 𝑃𝑟𝑎𝑛𝑑_𝑤𝑟.

Fig. VM1 and VM2 should each obtain
50% of the shared storage throughput.

Evaluation

Fig. The total saturation performance becomes
P1+2 = 1200 (the worst case).

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

1 2 3 4 5 6 7 8 9 10 11 12

Th
ro

u
gh

p
u

t
(I

O
P

S)

Time (30s each interval)

vm1 (16k) -- actual perf
vm1 (16k) -- fair share
vm2 (64k) -- actual perf
vm2 (64k) -- fair share
vm3 (128k) -- actual perf
vm3 (128k) -- fair share

VM1 starts

VM2 starts

VM3 starts

CFQ(Linux)

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

 10,000

1 2 3 4 5 6 7 8 9 10 11 12

Th
ro

u
gh

p
u

t
(I

O
P

S)

Time (30s each interval)

vm1 (16k) -- actual perf
vm1 (16k) -- fair share
vm2 (64k) -- actual perf
vm2 (64k) -- fair share
vm3 (128k) -- actual perf
vm3 (128k) -- fair share

VM1 starts

VM2 starts

VM3 starts

 -

 1,000

 2,000

 3,000

 4,000

 5,000

 6,000

 7,000

 8,000

 9,000

1 2 3 4 5 6 7 8 9 10 11 12

Th
ro

u
gh

p
u

t
(I

O
P

S)

Time (30s each interval)

vm1 (16k) -- actual perf
vm1 (16k) -- fair share
vm2 (64k) -- actual perf
vm2 (64k) -- fair share
vm3 (128k) -- actual perf
vm3 (128k) -- fair share

VM1 starts

VM2 starts

VM3 starts

0.0

1.0

2.0

3.0

4.0

Sysbench(VM1) FTP(VM2) SCP(VM3)

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

Linux(CFQ)

mClock(PS)

vFair(BAPS)

0

5

10

15

20

25

30

35

PostMark(VM1) FTP(VM2) SCP(VM3)

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

Linux(CFQ)

mClock(PS)

vFair(BAPS)

0

1

2

3

4

5

6

7

DVDstore(VM1) FTP(VM2) SCP(VM3)

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

Linux(CFQ)

mClock(PS)

vFair(BAPS)

 BOPS does not take blender effect into account.
 BAPS ensures high efficiency with best-effort fairness

guarantees.
 BSPS ensures the best fairness guarantees.

Micro-Benchmark

SFQ(mClock) BAPS(vFair)
Fig. Throughput (IOPS) distribution among three VMs running workloads with random IOs with various Isizes.

Application Workloads

Fig. Application-level throughput (trans/second) comparisons of three schedulers using

Sysbench PostMark DVD Store

 vFair provides very good fairness for low IO-concurrency workloads.

 vFair improves fairness of storage IO scheduling by an order of magnitude.
 vFair isolates throughput of different VMs and achieves the specified

proportional fair shares.

Fig. An illustration of unfairness.

Fig. Architecture of vFair.

1 2

3

4

5

In practice, it is NOT
possible to accurately
measure the service time.

Due to IO-blender effect, using static
𝑃𝑖 to estimate storage capacity would
become imprecise over time.

Scheduling Strategy Fairness Guarantee Work-conserving? High Utilization?

BOPS(vFair) Good Yes Yes

BAPS(vFair) Better Yes Yes

BSPS(vFair) Best Yes No

PS(mClock) Good Yes Yes

CFQ(Linux) Bad No No
Time-Quanta

based scheduler Best No No

 First level: Credit-based IO Rate Controller
 Second level: Faire queuing scheduling SFQ(D)

Realization?

Root cause: The arrival of
synchronous IO requests can
be greatly delayed by
asynchronous IOs.

𝑃1= 8000
average length = 16 KB
average latency = 10 ms

𝑃2= 1200
average length = 128 KB
average latency = 10 ms

𝑃1_alloct = 𝑃1/2 = 4000
𝑃2_alloct = 𝑃2/2 = 600

VM1

VM2

VM1 VM2

VM1 VM2

VM1 VM2

… …

1 2 3 4 5 6 7 8

… …

2 7 8 1 6 5 3 4

… …

1 3 5 7 9

… …

4 2 6 8

𝑃1= 8000, Sequential access 𝑃2= 1200, Random access

𝑃1+2 ≈ 1200, Random access

11 13 15 14 16 12 10

