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Time Series Data Analytics Approach: Data Transformations

* Time series data  User-defined transformations on ingested data
» Sensors, cluster performance counters, etc. » Transformed data and raw data both kept
* Analytical queries « Each query uses most efficient option
» E.g., find data correlated to another range of data of data
* Our goals Ingest-time processing
» Interactive queries: need sub-second latency Fr eqD
> Queries on both recent data and historical data Ingest DataCleanse E Tr OMmajn
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Example Use Case: Correlation Search * Ingest-time processing

» Transformations based on user-defined windows
 E.g., every hour of data collected from one sensor
» Chained transformations
 E.g., data cleansing before others
» Keeping multiple versions of transformed data
* E.g., with different window granularities and error bounds

 Find data ranges with correlation larger than a threshold
« Can be approximated with frequency domain
transformations (e.g., wavelet)
> Bounded error and much smaller than raw data

Transforms defined:

Climate Wavelet(window=1month, error=10%) * Query-tlme processing
dats Wavelet(window=1year, error=10%) » Automatic transformed data selection
Wavel indow=1 , =20% - ags .
\ave Frindonhyeen erormet * Based on user-defined utility functions

» Translate queries to use transformed data
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* Anomaly detection

« Experiment: find correlated timeseries windows » Calculate and store ARMA residuals at ingest-time
» Dataset: climatic data with 350 million data points > 2.8% of the baseline query latency
169 2 e * Event occurrence monitoring
;q“% o 1 £ 400 - » Use count-min sketch to summarize count info compactly
; 1.4 GB 1 2 300 il _
| £ 200 _ > 40,000x lower latency with 12% error
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e Some takeaway observations
» Only 1.7% of the baseline latency with false negative/positive rates 3%/22%
» 4% ingestion overhead when doing six wavelet and two downsample transformations
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