

On Data Skewness, Stragglers, and MapReduce
Progress Indicators

Emilio Coppa and Irene Finocchi

Progress analysis helps users understand the program
execution and can shed light on abnormal behaviors:

Example: Apache Hadoop progress indicator

[...]
11:30:01: Running job: job_201503151102_0002
11:30:02: map 0% reduce 0%
11:32:26: map 10% reduce 0%
11:34:48: map 19% reduce 0%
11:36:32: map 30% reduce 0%
11:38:26: map 41% reduce 0%
11:40:08: map 52% reduce 0%
11:42:39: map 64% reduce 0%
11:44:14: map 75% reduce 0%
11:46:25: map 86% reduce 0%
11:50:01: map 100% reduce 0%
11:51:01: map 100% reduce 10%
11:52:57: map 100% reduce 34%
11:55:02: map 100% reduce 52%
11:57:07: map 100% reduce 73%
11:58:49: map 100% reduce 91%
11:59:54: map 100% reduce 100%
13:59:59: Job complete: job_201503151102_0002
[...]

Benchmark: WordCount
Dataset: Wikipedia dump

Another example:
MatMul - a sparse matrix multiplication library

OK
KO

After ~4 mins:
- true progress: 10%
- true remaining time: 36 mins
- estimated progress: 85%
- estimated remaining time: ~1 min

Straggler: a task which takes
much longer to complete than
the other ones

● Partitioning skewness: keys unfairly
partitioned among tasks

● Shuffle data skewness: few key groups
much larger than others

● Computational skewness: data skewness +
superlinear reduce functions

Skewness and stragglers in MapReduce

Linear progress assumption: running
time depends linearly on the input size

State-of-art progress indicators do not deal
with computational skewness

Computational skewness common in practice:

e.g., computing clustering coefficients in social

networks (power-law degree distribution)

KO

Experimental results

multi-wavesingle-wave

Space and time overhead of NearestFit

Applications: text processing (WordCount, InvertedIndex), graph
computations (2LengthPathGenerator, TriangleCount), numerical analysis
(MatrixMultiplication), database processing (NaturalJoin).

Datasets: Wikipedia dump, 6 social networks (SNAP project), 2 sparse
matrices (uniform/skewed value distribution), and 5 skewed relations
(zipf distribution).

Accuracy: NearestFit vs state-of-art indicators

2LengthPathGenerator
com-Youtube

2LengthPathGenerator
web-Bekstan

TriangleCount
as-Skitter

MatMul
skewed matrix

InvertedIndex
Wikipedia

NaturalJoin
skewed RS (zipf 1.5)

Design and implementation of NearestFit,
a novel progress indicator especially well-
suited for long-running applications.

Bird's eye view of our prediction model

progress(t) e(t) ei(t)...
...

... f(|Vk|)...
reduce phase reduce task reduce function

top-down

Step 1 Step 2 Step 3

(Step 1) Reduce progress at time t

estimated
end time

phase
start time

(Step 2) ending time reduce phase:

estimated
end time of task i

time of last
completed reduce
execution in task i

estimated remaining
time of task i

exact cost model for the running time of reduce functions:
unknown in general

Our assumption: running time function of input size

approximate cost model for the
running time of reduce functions

How to predict reduce running time for key group (k, Vk)?

Two complementary techniques

Technique 1: δ-nearest neighbor regression

average of the running times observed
in the δ-neighborhood of k

Rather accurate, but δ-neighborhood
could be empty (especially for stragglers)

Technique 2: curve fitting

Find a mathematical model (parameters a, b, and c):

Potentially always applicable, but
hard to tune in practice (unstable, noisy profiles)

Combination of the two techniques overcomes their drawbacks

while retaining their advantages:

Exploit profiling
data from local
task

Resort to
profiling data
from other
tasks, if needed

Key insights:
● nearest neighbor, if applicable, more accurate than curve fitting
● prioritize task-local profiling data: VMs can exhibit vastly different

performance even on homogeneous clusters
● if not enough profiling data available from task i, resort to profiles from

other tasks (job-level profiles)

!

!

Map profiles:
top-k keys with largest sets of values

+
cumulative summary of remaining

keys and their sizes

Key distribution profile:
approximate top-k keys with largest set of

values among all reduce tasks
+

cumulative summary of remaining
keys and their sizes

An operational view of NearestFit

Reduce profiles:
Running times and key group sizes of past

executions of the reduce function

1) Map workers send map profiles to application master

2) Using map profiles, application master builds a key distribution profile

3) Reduce workers periodically send reduce profiles to application master

4) Using key distribution and reduce profiles, application master estimates progress
Application

master

Map
worker

Map
workerInput

Data

Split 1
Split 2

Reduce
worker

Reduce
worker

Output
File 0

Output
File 1

profile summary
(data streaming

approach)

key distribution
profile

reduce profiles

User
progress

(1)

(2)

(3)

(4)

Implemented on top of Hadoop 2.6.0

Implementation ingredients

Platform: 8/16/32 m1.xlarge instances from Amazon Web Services

(1) Characterization of reduce task inputs

Which is the distribution of key group sizes for a given task?

 Obtained by profiling map tasks

(2) Information about past executions of reduce functions:

Which are the input sizes and running times of terminated
 executions?

Massive amounts of fine-grained profile data:
non negligible time and space overheads!

NearestFit exploits space and time efficient data
streaming algorithms to approximate some of the

quantities required by the theoretical model

k: any unprocessed key assigned to task i
Vk: set of values associated with k

input size

re
d
u
ce

 r
u
n
n
in

g
 t

im
e

past reduce
executions

a+bxcx = |Vk|

Same benchmark, different datasets:

very different progress prediction accuracy. Why?

neighbors of k

input size

re
d
u
ce

 r
u
n
n
in

g
 t

im
e

x

past reduce
executionsavg

x+ x-

x = |Vk|

(task) nearest-neighbor

(task) curve fitting

(job) nearest-neighbor

(job) curve fitting

pr
io

rit
y

input size

re
d
u
ce

 r
u
n
n
in

g
ti

m
e

Accuracy on different clusters

Map: ~20mins
Reduce: ~10mins

(Step 2) Estimated end time

t t e

(t) e (t) = e (t)start 1 2p (t)

2
p (t)

1

r (t) 2

r (t) 1

Task 2

Task 1

(Step 3) Remaining time of task i

Then:

Combining nearest neighbors and curve fitting

Obtained by profiling
reduce tasks

Our approach:
● no linear progress assumption
● predictions based on dynamically collected

fine-grained profile data
● exploit machine learning techniques to predict

remaining running time
● efficient implementation based on data

streaming algorithms

- remaining time? - slow/stalled computations?
- load unbalancing? - algorithmic inefficiencies?

Our contribution

	Slide 1

