
MemcachedGPU: Scaling-up Scale-out Key-value Stores
Tayler H. Hetherington

taylerh@ece.ubc.ca
The University of British Columbia

Mike O’Connor
moconnor@nvidia.com
NVIDIA / UT-Austin

Tor M. Aamodt
aamodt@ece.ubc.ca

The University of British Columbia

GPU Network Offload Manager (GNoM)

MemcachedGPU

Evaluation

Key	 Size	 16	 B	 64	 B	 128	 B	
Tesla	 drops	 @	 server	 0.002%	 0.003%	 0.006%	
Tesla	 drops	 @	 client	 0.428%	 0.043%	 0.053%	
Tesla	 MRPS/Gbps	 12.9	 /	 9.9	 8.7	 /	 10	 	 6	 /	 10	

Maxwell-‐NGD	 drops	 @	 server	 0.47%	 0.05%	 0.02%	
Maxwell-‐NGD	 MRPS/Gbps	 12.9	 /	 9.9	 8.7	 /	 10	 6	 /	 10	

Load RX packets

Network service
processing

Network service populate response &
complete response packet header

UDP response
packet generation

Store TX packets

G
lo

ba
l M

em
or

y

Sh
ar

ed
 M

em
or

y

UDP processing

Main Warps Helper Warps

Rx

Rx

Tx

GPUDirect

Tx

Rx
NIC Rx

Tx

CPU:GNoM-host

GNoM-KM
OS

GNoM-ND

GNoM-pre

GNoM-post

User-level
Memcahed Item values Metadata

 - GRXBs

Hash/lock tables

Response
Buffers

GPU:GNoM-dev

TXBs Exploit request-level
parallelism through
fine-grained batching.

Multiple warps used to exploit
task-level parallelism within a
request to reduce latency. MemcachedGPU

UDP network processing in-line
with application processing.

TX packets populated
from the GPU and CPU.

Transfer RX packet data directly to
GPU memory using GPUDirect.

Packet Data
Packet Metadata

Control Flow
__syncthreads

Packet Data + Metadata
Kernel and user-level software framework
to efficiently manage interactions between
CPU, GPU, and NIC.

RX packet metadata
transferred through the CPU.

0%#
5%#

10%#
15%#
20%#
25%#
30%#
35%#
40%#
45%#

2# 4# 6# 8# 10# 12# 14# 16# 18# 20#

M
is
s#R

at
e#
(%

)#

Hash#Table#Size#(Millions#of#Entries)#

32@way#

8@way#

2@way#

16@way#

4@way# Direct#
Mapped#

Hash##
Chaining#

Request#trace#working#set#

Hash Table Analysis

Miss-rate vs. hash table associativity and size compared to
hash chaining for a request trace with a working set of 10
million requests following a Zipfian distribution. 16-ways
closely matches hash chaining.

200#
500#
800#
1100#
1400#
1700#
2000#

2# 4# 6# 8# 10# 12#

RT
T#
La
te
nc
y#
(u
s)
#

Average#MRPS#

Tesla?NGD#
Maxwell?NGD#
Tesla?GNoM#

Mean	 latency	

200#
500#
800#
1100#
1400#
1700#
2000#

2# 4# 6# 8# 10# 12#
Average#MRPS#

95-‐percen8le	 latency	

RTT Latency Analysis

MemcachedGPU Mean and 95-percentile round-trip-time (RTT) latency with
512 requests/batch. GNoM reduces mean latency vs. NGD by 75%-96%.

	 NVIDIA	 GPU	 Tesla	 K20c	 GTX	 750Ti	

Throughput	 (MRPS)	 27.5	 28.3	

Avg.	 Latency	 (us)	 353.4	 263.6	

Energy-‐efficiency	 (KRPS/W)	 100	 127.3	

Offline Analysis

MemcachedGPU offline, in-memory limit-study without
network transfers. Results show promise for even lower power
integrated GPUs in the data center.

Set 0 Set 1 Set N
Hash Table /
Key Storage

Lock Table

Value Storage

GPU
Memory

CPU
Memory

Main Memcached Modifications

NVIDIA	 GPU	 Tesla	 K20c	 GTX	 750Ti	
Architecture	 Kepler	 Maxwell	
#	 Cores/Freq.	 2496	 /	 706	 MHz	 640	 /	 1020	 MHz	
Mem	 size	 /	 BW	 5	 GB	 /	 208	 GB/s	 2	 GB	 /	 86.4	 GB/s	

TDP	 225	 W	 60	 W	
Cost	 $2,700	 $150	

RX	 mode	 GPUDirect	 (GNoM)	 Non-‐GPUDirect	 (NGD)	

•  Use GPUs as flexible, energy-efficient accelerators for
general network services in the data center.
•  Exploit request-level parallelism through request batching

on the massively parallel GPU architecture.
•  Small batches (e.g., 512 requests) to improve latency.
•  Concurrent batches to improve throughput.

•  Perform both UDP network processing and application
processing on the GPU.

•  GNoM: Achieve high-throughput, low-latency, and energy-
efficient UDP network processing on commodity Ethernet
and GPU hardware.

•  MemcachedGPU: Design and evaluate a popular in-
memory key-value store application, Memcached, on GPUs.
•  Distributed look-aside cache to alleviate database load.
•  Requests: GET (read), SET/UPDATE/DELETE (modify).
•  Goal: Scale-up the GET performance of single server.

Main Goals and Contributions

•  Data centers consume significant amounts of power
to operate (e.g. 10’s of Megawatts).

•  There is a continuously growing demand for higher
performance in the data center.
•  Cannot easily trade performance for power.

•  Data center hardware needs to be general to support

constantly changing workloads and requirements.

•  Ideal properties for a data center accelerator:
• High performance. • High energy-efficiency.
• High generality and

programmability.
• Low-cost commodity

hardware.

Problem & Motivation

Paper: ece.ubc.ca/~taylerh/doc/MemcachedGPU_SoCC15.pdf

Code: github.com/tayler-hetherington/MemcachedGPU	

•  Focus on accelerating GET requests on the GPU - majority of
SET request processing still on the CPU.

•  Many changes required to the core Memcached data structures
and operations to improve performance and scalability:
•  Partition key (GPU) and value storage (CPU).
•  Hash table: dynamic hash chaining static set-associative.
•  Global LRU replacement local per-set LRU replacement.
•  Global locking per-set shared/exclusive locking.

Potential Solutions & Tradeoffs
“Wimpy” cores
+  Lowers power consumption.
-  Reduces performance.

ASICs
+  Very high performance and energy-efficiency.
-  Lacks generality.

FPGAs
+  High performance and energy-efficiency.
+  Generality through reprogrammable hardware.
+  Used in Microsoft’s data centers for Bing (Catapult).
-  More difficult to program than general-purpose processors.

•  Programmability improving with high-level synthesis,
but may trade off the quality of results.

-  Reprogramming times may limit potential for fine-grained
task switching to support multiple concurrent workloads.

GP-GPUs
+  High performance and energy-efficiency.
•  Improves throughput at the cost of latency.

+  General-purpose and highly programmable.
+  Positive impact on performance and energy-efficiency in

supercomputing.
+  Used in Google’s data centers for Machine Learning.
-  SIMD architecture limits potential applications.
-  Smaller main memory than CPUs.

•  Integrated GPUs may remove this limitation.

Peak GET Throughput Analysis

GNoM and MemcachedGPU achieve ~10 GbE processing at all key-value
sizes. With varying key/value lengths, MemcachedGPU becomes network
bound before compute bound.

Power and Energy-Efficiency Analysis

System wall power and energy-efficiency of MemcachedGPU. The Tesla
GPU only consumes 32% of peak TDP (underutilizing GPU resources).
There are opportunities to further improve total system energy-efficiency
through additional GPU I/O and system software support.

GPUs

Evaluated a high-performance and low-power GPU. The low-
power GPU has comparable performance with higher efficiency.

Workload Consolidation Analysis

Impact on RTT when running a low-priority background task
(BGT) on the same GPU with MemcachedGPU at 4 MRPS.
The BGT is split into smaller kernels with fewer CTAs (256
CTAs total). 16 CTAs per BGT kernel reduces the max client
RTT by 18X, while increasing the BGT execution time by 50%.

0"
4"
8"
12"
16"
20"
24"
28"
32"

0" 4" 8" 12" 16" 20" 24" 28" 32" 36" 40" 44" 48" 52"

Av
g.
"C
lie
nt
"R
TT
"(m

s)
"

Time"(ms)"

1" 2" 4" 8" 16"# of Background kernels

0"

15"

30"

45"

60"

75"

90"

0"
30"
60"
90"
120"
150"
180"
210"
240"

1" 2" 4" 6" 8" 10" 13"

KR
PS
/W

"

W
"

Average"MRPS"

Avg."Tesla"System"
Power"

Avg."Tesla"Power"

Tesla"System"
EnergyDEfficiency"

Maxwell"System"
EnergyDEfficiency"
(Peak"Throughput)"

