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GPU Network Offload Manager (GNoM) 

MemcachedGPU 

Evaluation 

Key	  Size	   16	  B	   64	  B	   128	  B	  
Tesla	  drops	  @	  server	   0.002%	   0.003%	   0.006%	  
Tesla	  drops	  @	  client	   0.428%	   0.043%	   0.053%	  
Tesla	  MRPS/Gbps	   12.9	  /	  9.9	   8.7	  /	  10	  	   6	  /	  10	  

Maxwell-‐NGD	  drops	  @	  server	   0.47%	   0.05%	   0.02%	  
Maxwell-‐NGD	  MRPS/Gbps	   12.9	  /	  9.9	   8.7	  /	  10	   6	  /	  10	  
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TXBs Exploit request-level 
parallelism through 
fine-grained batching. 

Multiple warps used to exploit 
task-level parallelism within a 
request to reduce latency. MemcachedGPU 

UDP network processing in-line 
with application processing. 

TX packets populated 
from the GPU and CPU. 

Transfer RX packet data directly to 
GPU memory using GPUDirect. 
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Packet Data + Metadata 
Kernel and user-level software framework 
to efficiently manage interactions between 
CPU, GPU, and NIC.  

RX packet metadata 
transferred through the CPU. 
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Hash Table Analysis 

Miss-rate vs. hash table associativity and size compared to 
hash chaining for a request trace with a working set of 10 
million requests following a Zipfian distribution. 16-ways 
closely matches hash chaining. 
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RTT Latency Analysis 

MemcachedGPU Mean and 95-percentile round-trip-time (RTT) latency with 
512 requests/batch. GNoM reduces mean latency vs. NGD by 75%-96%.  

	  NVIDIA	  GPU	   Tesla	  K20c	   GTX	  750Ti	  

Throughput	  (MRPS)	   27.5	   28.3	  

Avg.	  Latency	  (us)	   353.4	   263.6	  

Energy-‐efficiency	  (KRPS/W)	   100	   127.3	  

Offline Analysis 

MemcachedGPU offline, in-memory limit-study without 
network transfers. Results show promise for even lower power 
integrated GPUs in the data center. 
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Main Memcached Modifications 

NVIDIA	  GPU	   Tesla	  K20c	   GTX	  750Ti	  
Architecture	   Kepler	   Maxwell	  
#	  Cores/Freq.	   2496	  /	  706	  MHz	   640	  /	  1020	  MHz	  
Mem	  size	  /	  BW	   5	  GB	  /	  208	  GB/s	   2	  GB	  /	  86.4	  GB/s	  

TDP	   225	  W	   60	  W	  
Cost	   $2,700	   $150	  

RX	  mode	   GPUDirect	  (GNoM)	   Non-‐GPUDirect	  (NGD)	  

•  Use GPUs as flexible, energy-efficient accelerators for 
general network services in the data center.  
•  Exploit request-level parallelism through request batching 

on the massively parallel GPU architecture.  
•  Small batches (e.g., 512 requests) to improve latency. 
•  Concurrent batches to improve throughput. 

•  Perform both UDP network processing and application 
processing on the GPU.  
 

•  GNoM: Achieve high-throughput, low-latency, and energy-
efficient UDP network processing on commodity Ethernet 
and GPU hardware.  
 

•  MemcachedGPU: Design and evaluate a popular in-
memory key-value store application, Memcached, on GPUs. 
•  Distributed look-aside cache to alleviate database load.  
•  Requests: GET (read), SET/UPDATE/DELETE (modify).  
•  Goal: Scale-up the GET performance of single server.  

Main Goals and Contributions 

•  Data centers consume significant amounts of power 
to operate (e.g. 10’s of Megawatts). 
 

•  There is a continuously growing demand for higher 
performance in the data center.  
•  Cannot easily trade performance for power. 

 
•  Data center hardware needs to be general to support 

constantly changing workloads and requirements. 
 

•  Ideal properties for a data center accelerator: 
• High performance.  • High energy-efficiency. 
• High generality and 

programmability. 
• Low-cost commodity 

hardware. 

Problem & Motivation 

Paper: ece.ubc.ca/~taylerh/doc/MemcachedGPU_SoCC15.pdf 

Code: github.com/tayler-hetherington/MemcachedGPU	  

•  Focus on accelerating GET requests on the GPU - majority of 
SET request processing still on the CPU.  

•  Many changes required to the core Memcached data structures 
and operations to improve performance and scalability: 
•  Partition key (GPU) and value storage (CPU). 
•  Hash table: dynamic hash chaining      static set-associative. 
•  Global LRU replacement      local per-set LRU replacement.  
•  Global locking      per-set shared/exclusive locking.  

Potential Solutions & Tradeoffs 
“Wimpy” cores 
+  Lowers power consumption. 
-  Reduces performance. 

 
ASICs 
+  Very high performance and energy-efficiency.  
-  Lacks generality.  

 
FPGAs 
+  High performance and energy-efficiency. 
+  Generality through reprogrammable hardware. 
+  Used in Microsoft’s data centers for Bing (Catapult). 
-  More difficult to program than general-purpose processors. 

•  Programmability improving with high-level synthesis, 
but may trade off the quality of results.  

-  Reprogramming times may limit potential for fine-grained 
task switching to support multiple concurrent workloads. 

 
GP-GPUs 
+  High performance and energy-efficiency. 
•  Improves throughput at the cost of latency. 

+  General-purpose and highly programmable. 
+  Positive impact on performance and energy-efficiency in 

supercomputing. 
+  Used in Google’s data centers for Machine Learning. 
-  SIMD architecture limits potential applications. 
-  Smaller main memory than CPUs. 

•  Integrated GPUs may remove this limitation. 

Peak GET Throughput Analysis 

GNoM and MemcachedGPU achieve ~10 GbE processing at all key-value 
sizes. With varying key/value lengths, MemcachedGPU becomes network 
bound before compute bound. 

Power and Energy-Efficiency Analysis 

System wall power and energy-efficiency of MemcachedGPU. The Tesla 
GPU only consumes 32% of peak TDP (underutilizing GPU resources). 
There are opportunities to further improve total system energy-efficiency 
through additional GPU I/O and system software support.  

GPUs 

Evaluated a high-performance and low-power GPU. The low-
power GPU has comparable performance with higher efficiency.  

Workload Consolidation Analysis 

Impact on RTT when running a low-priority background task 
(BGT) on the same GPU with MemcachedGPU at 4 MRPS. 
The BGT is split into smaller kernels with fewer CTAs (256 
CTAs total). 16 CTAs per BGT kernel reduces the max client 
RTT by 18X, while increasing the BGT execution time by 50%. 
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