
Online Parameter Optimization for
Elastic Data Stream Processing

Thomas Heinze1, Lars Roediger1, Andreas Meister2, Yuanzhen Ji1, Zbigniew Jerzak1, Christof Fetzer3

1SAP SE 2University of Magdeburg 3TU Dresden
{firstname.lastname}@sap.com andreas.meister@iti.cs.uni-magdeburg.de christof.fetzer@tu-dresden.de

A major problem of today’s cloud infrastructure is the low
utilization of the overall system [3], which results in both high cost
for the user and low energy efficiency of the cloud itself. This is
caused by the fact, that a user typically needs to define a scaling
strategy by configuring the number of used machines, a set of
thresholds, or a controller to decide when the system should scale
in or out. However, often a user has a limited understanding of the
used system and the workload. Therefore, he chooses the scaling
scheme conservatively to be able to handle peak loads and as a
result achieves a very low system utilization.

This observation also holds true for data stream processing sys-
tems, which continuously produce output for a set of standing
queries and a potentially infinite input stream. Many real-world
workloads for data stream processing systems have a high vari-
ability, which means the data rate and selectivities of the streams
are frequently changing in an unpredictable way. Several authors
proposed data stream processing prototypes, which automatically
scale in or out based on workload characteristics, to handle these
dynamic workloads. Such systems are called elastic and allow to
increase the system utilization by only using the minimal required
number of hosts. However, in all of these prototypes the user needs
to manually specify a scaling strategy. In our previous work [2],
we illustrated that an adaptive auto-scaling technique is able to
improve the utilization of the system, but degrades the quality of
service. Each reconfiguration decision in a data stream processing
system interferes with the data processing and as a result has a high
impact on major quality of service metrics like the end to end la-
tency. Therefore, this characteristic needs to be reflected in the scal-
ing strategy to achieve a good trade-off between the monetary cost
spent and the achieved quality of service.

In this paper we address the problem of choosing the scaling
strategy for a data stream processing system by introducing a novel
approach based on online parameter optimization. We make the
following contributions:

1. We present an online parameter optimization approach, which
automatically (1) chooses the scaling strategy to minimize the
number of hosts used for the current workload characteristics,
(2) detects changes of the workload pattern, and (3) adapts
the scaling policy accordingly. Our system removes the burden
from the user to manually configure the scaling policy.

2. We show how this parameter optimization problem can be en-
hanced with a given quality of service constraint for the maxi-
mum end to end latency. This constraint is used during the op-
timization to improve the trade-off between monetary cost and
quality of service.

3. We evaluate our prototype based on three real-world use cases.
We show that we reduce the average cost by 19% compared to
a naive scaling scheme and by 10% compared to a manually

tuned scaling strategy with a comparable or even better quality
of service. We also show that our solution outperforms a state
of the art adaptive auto-scaling technique based on Reinforce-
ment Learning due to the more precise modeling of the scaling
behavior of a data stream processing system.

The solution presented in this paper consists of three major
components: an elastic scaling data stream processing engine, an
online profiler, and a parameter optimization component.

We extend an existing elastic data stream processing engine [2],
which scales automatically in and out based on a user-defined
scaling policy and the current workload characteristics. The scaling
policy uses threshold-based rules for the maximum and minimum
utilization of a host or the system respectively. These thresholds and
some additional parameters typically have to be chosen manually
by the user to fit the specific use case characteristics.

Our optimization component finds automatically a good param-
eter configuration based on a short-term utilization history during
the system runtime and reoptimizes it, if required. We define a cost
function as well as a parameter search space, and solve a parame-
ter optimization problem using an improved random search algo-
rithm [4].

We also introduce an online profiler, which determines the
frequency of triggering the parameter optimization. It monitors
changes of the workload pattern based on the overall CPU load
using an adaptive window [1]. If a change of the workload pattern
is detected, the optimization component is triggered using an up to
date short-term history of current load characteristics.

References

[1] A. Bifet and R. Gavaldà. Learning from time-changing data with
adaptive windowing. In Proceedings of the Seventh SIAM International

Conference on Data Mining, SDM 2007, pages 443–448, 2007.

[2] T. Heinze, V. Pappalardo, Z. Jerzak, and C. Fetzer. Auto-scaling tech-
niques for elastic data stream processing. In Workshops Proceedings

of the 30th International Conference on Data Engineering Workshops,
ICDEW 2014, pages 296–302. IEEE, 2014.

[3] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of the Third ACM Symposium on Cloud Computing,
SoCC 2012, page 7. ACM, 2012.

[4] T. Ye and S. Kalyanaraman. A recursive random search algorithm for
large-scale network parameter configuration. In Proceedings of the

2003 ACM SIGMETRICS international conference on Measurement

and modeling of computer systems, SIGMETRICS 2003, pages 196–
205. ACM, 2003.



Cost Function
Simulate behavior of scaling policy for short-term 

utilization history

Architecture
Extends an existing elastic data stream processing 

engine

Solution Outline
Search best parameter configuration online based on 

short-term utilization history.

Online Parameter Optimization 

for Elastic Data Stream Processing
Thomas Heinze, Lars Roediger, Andreas Meister, Yuanzhen Ji, Zbigniew Jerzak, Christof Fetzer

Elastic Scalability

Need to scale to varying

number of hosts

Automatically define

parameters for a scaling policy

Low system 

utilization

(1) Detect

workload change

(2) Search best

scaling policy

(3) Adapt parameters

during runtime

Elastic Data Stream Processing Engine

Online Profiler

Parameter 

Optimization

Elasticity Manager

Threshold-based 
Scaling Strategy

Goal

Parameter Optimization
Search best parameters based on Random Search

Utilization util

Search 
Algorithm

Cost
Function

Adapt?

Adapt to
Parameter Config p*

Best Found
Config p*, cost(p*)

Current
Parameter
Config p

p, cost(p)

P
a
ra

m
e
te

r 
O

p
ti
m

iz
a

ti
o
n

p, util
cost(pi)

pi, utilcost(p)

YesNo

No Adaptation

Distributed Data
Stream Processing

Engine

ops ∑util

H1 { S1, A1} 0.7

H2 {D1} 0.3

ops ∑util

H1 { S1} 0.5

H2 {D1} 0.4

H3 {A1} 0.5

ops ∑util

H1 { S1} 0.4

H2 {D1} 0.4

H3 {A1} 0.4

t0 t1 t2

S1 0.4 0.5 0.4

A1 0.3 0.5 0.4

D1 0.3 0.4 0.4

utils assign(t0)

ops

H1 { S1, A1}

H2 {D1}

thres↓ 0.3 1 d↓

thres↑ 0.8 1 d↑

g 1 FF bin

p*

t0 t1 t2

INPUT

CALCULATION

Evaluation
Comparison with manual-tuned

thresholds for three real-world

Scenarios.

Improve cost by 19%/10% 

compared to naïve/best configuration.

Financial Day1 Financial Day2 Financial Day3 Twitter Week1 Twitter Week2

Twitter Week3 Energy Week1 Energy Week2 Energy Week3

0

20

40

60

0

20

40

60

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5
Monetary Cost($)

L
a
te

n
c
y
 V

io
la

ti
o

n
s
(#

)

Manual Optimized

SoCC 2015, Hawaii


