
The Nearest Replica Can Be Farther Than You Think

Kirill Bogdanov
KTH Royal Institute of Technology

kirillb@kth.se

Miguel Peón-Quirós ∗

University Complutense of Madrid
mikepeon@gmail.com

Gerald Q. Maguire Jr.
Dejan Kostić

KTH Royal Institute of Technology
maguire@kth.se dmk@kth.se

Cloud services implemented on top of third party cloud
environments comprise many useful services and serve hun-
dreds of millions of users spread across the globe. Ensuring
low latency when serving user requests is highly important,
as it has become one of the differentiating features of most
popular services. However, this is a difficult problem as
depending on replication policies, the consistency model of a
service, and the current network state, clients have to choose
which replica or set of replicas they will access, using so-
called replica selection algorithms. These algorithms are ex-
pected to consistently make excellent choices in an unstable
environment of geo-distributed systems spread across the
wide-area.

The replica selection process is inherently hard. The
service’s clients conduct passive and active measurements
of the latency for served requests, and use this history to
drive future choices of the replicas to use. Unfortunately,
Internet traffic is bursty and routing frequently changes,
hence latency varies.

Errors in replica selection algorithms are extremely hard
to find. Such errors usually do not result in critical system
failures and it is hard to determine the optimal behavior in
the absence of up-to-date, full global knowledge. Moreover,
debugging replica selection algorithms is difficult due to
the number of potential causes for bugs, such as sampling
problems, problems in math calculations, selection logic
problems, etc. In this work we propose GeoPerf, a system-
atic testing tool for replica selection algorithms.
Approach At the core of our approach is a novel technique
that combines symbolic execution and lightweight modeling
to generate a set of inputs that can expose weaknesses in
replica selection. We apply symbolic execution, because it
systematically uses the code itself to identify test inputs that
can cause the code under test to examine all branches in
the code and ultimately traverse all possible code paths. In
our case, the inputs are the latencies that could be observed
by the replica selection algorithm under test, while code
paths correspond to different replica choices made by the
algorithm.

∗ Work done while the author was at IMDEA Networks Institute.

The core of the tool is based on our own discrete event-
based simulator developed as part of GeoPerf. The setup
simulates: (i) a set of geo-distributed nodes connected via
wide-area network paths, (ii) arrival of incoming client
requests and (iii) a replica selection module that periodically
chooses a subset of nodes to serve these requests. We create
two instantiations of the simulator, one using the reference
replica selection algorithm and the other the algorithm under
test. Both instances run in parallel in identical environments
(using synchronized clocks and deterministic synchronized
pseudo-random number generators). A symbolic execution
engine is used to drive the exploration of the code paths
generating a set of symbolic latencies (i.e., inputs) that
characterize the network paths among the nodes. The target
of the exploration is to find a sequence of network states that
exposes potential weaknesses (bugs) of one of the algorithms
by repeatedly demonstrating inferior performance (choices)
in the simulated environment.
Contributions We make the following contributions:
1. We conduct thorough round-trip time measurements
across all geo-distributed datacenters belonging to one cloud
provider (Amazon EC2)[1], for several weeks. Using this
data, we show that the replica orderings change up to several
tens of times per day, from any given datacenter’s viewpoint.
2. We propose, design, and implement techniques that over-
come challenges in applying symbolic execution to testing
replica selection algorithms.
3. Using GeoPerf we found bugs in the replica selection
algorithm of two popular geo-distributed data stores,
Cassandra[3] and MongoDB[2].
4. In addition, we quantify the impact of the bugs that
GeoPerf found. Specifically, we replay the trace of the
latencies we collected across Amazon EC2 using GeoPerfs
event simulator, and compute the median time that is wasted
due to the bugs. In the case of Cassandra, the median wasted
time for 10% of all requests is above 50 ms.
Acknowledgments Work funded by ERC project 259110.

References
[1] Amazon ec2. http://aws.amazon.com/ec2/.

[2] Mongodb. http://www.mongodb.org/.

[3] APACHE. Cassandra. http://cassandra.apache.org/.

http://aws.amazon.com/ec2/
http://www.mongodb.org/
http://cassandra.apache.org/

1. Extract replica selection algorithm from a production
system

2. Instantiate 2 simulations; configure one to use the
target algorithm and configure the other to use a
reference algorithm

3. Systematically examine code paths in an effort to

produce a case in which one algorithm under test

performs worse than the reference one

a. Evaluate decisions using simulation output
b. Generate concrete test cases to reproduce

The Nearest Replica Can Be Farther
Than You Think

● Errors in replica selection algorithms do not lead to
critical failures (hard to find) and it is hard to
determine the correct behavior at a run time without
global knowledge

● Debugging is complicated by many potential sources of
problems

● A huge testing space is required to cover the many
possible topologies, bandwidth, latency and loss rates

● Compared Cassandra’s replica selection module with
GeoPerf’s ground truth model

● GeoPerf was able to generate a set of latency inputs that
resulted in algorithms making different choices and as a
result achieving different performance

● Performance difference indicate bugs in the code (as shown
below)

● Generated latency trace used to identify real bug (as
shown below)

Why is it difficult?

Evaluating by Testing Cassandra

Work supported by the European Research Council
Project PROPHET, 259110 (http://prophet.ssvl.kth.se)

● We have examined 2 production level geo distributed
storage systems: Apache Cassandra and MongoDB and
found a bug in each system

Tested Systems

￼

● Geo-Distributed systems are spread across the globe
● Clients need to choose which set of replicas to utilize
● Constantly changing network conditions pose

significant problem in determining closest replicas

● Suboptimal replica choices can result in increased
latency and can drive a significant fraction of the
customers away

Problem

Symbolic Execution EngineProduction System
Cassandra, MongoDB

Replica Selection
Algorithm

Discrete Event Simulation-A

Algorithm-A

Discrete Event Simulation-B

Algorithm-B
Reference
Replica Selection
Algorithm

Our Approach (GeoPerf)

Assert
Time @A>Time @B

Congestions

Routing
change

Multiple changes
of replica orders

>20%
500ms

2 close
replicas

1 far
replica

Kirill Bogdanov, Miguel Peón-Quirós, Gerald Q. Maguire Jr., Dejan Kostić

Kirill Bogdanov, Gerald Q. Maguire Jr.,
Dejan Kostić
KTH Royal Institute of Technology
School of Information and
Communication Technology (ICT)
SE-164 40 Kista
Sweden

kirillb@kth.se
mikepeon@gmail.com
maguire@kth.se
dmk@kth.se

Miguel Peón-Quirós

University Complutense of Madrid
Avda. de Séneca, 2
Ciudad Universitaria
28040 Madrid

KTH ROYAL INSTITUTE OF TECHNOLOGY

http://prophet.ssvl.kth.se

