Database Group

Transactions in the Cloud

* Goal: high performance, strong consistency,
elasticity, and loose coupling

 Centiman: OCC-based transaction engine on top
of a key-value store

 Sharded validation: # of validators changes
elastically, minimal points of synchronization, no
shared state

 Watermarks: lazily propagate info about global
state, optimize read-only transactions

Sharded Validation & Watermarks

* Partitioned OCC validators: commit only if all agree
* Problem: spurious aborts

X Vv

Validator 1 Validator 2
abort commit

Txn aborts but Validator 2
stores write set and uses it
to validate future txns;
may abort unnecessarily

* Solution: watermarks lazily propagate through
system info about completed transactions

»Each read associated with a read watermark
»Bad write sets "age out"
» Local check optimization for read-only txns

Evaluation: Elastic Scaling

 Vxy - start with x validators, scaletoy
* Watermarks updated every 10K transactions
* Scaling starts at 60s, ends at 120s

 VI2.WI10K | VI2, WIOK V23, WIOK — V34, WI0K

V23, WI10K -
V34,W10K

—
-

100 1

-
)
-
o0

Percent (%)
N
S
Percent (%
o
o)

N

-
o
=

(\®)
-
-
(\9]

0 60 (start) 120 (end) 130 0 60 (start) 120 (end) 180
Time (Second) Time (Second)

% of transactions for which % of spurious aborts in system

new Vvalidator has insufficient
state to validate

* NO spurious aborts possible
with one validator

Centiman: Elastic, High Performance Optimistic
Concurrency Control by Watermarking

Bailu Ding, Lucja Kot, Alan Demers, Johannes Gehrke
Cornell University and Microsoft Corp.

Centiman System Architecture

Global Master

monitors load, handles scaling/
migration/failure recovery

Validator Validator Validator

success/failure validation validation requests incl.

. responses xact read/write sets
Processing Client

Subsystem PrOCESSOrS issue xacts/ get
responses

get/put requests in read/
write phase resp.

Transaction

Client

responses

Key-Value
Datastore

Storage nodes

Elastic Scaling for Validation

* [nitialization: choose new data partitioning
between validators

* Transition: processors send validation requests
under both old and new partitioning

» Under new partitioning, initially validators
have insufficient state; abort conservatively

» Authoritative decisions made under old
partiioning
 Switch: when validators have sufficient state,
switch over to new partitioning

Evaluation: Benchmarks

* Stress validators with up to 50 storage nodes and
50 processors

250

)

Throughput Throughput
Throughput w/ Local-Check —+—

Single Node Throughput
200

N

Throughput (M)
N w
Throughput (K)
S
S S

[
)
-

-

1 2 3 4 5 6 7
Number of Validators

H
)
ok
IN
-

Number of Validators

TATP TPC-C

8

/




