Database Group

Transactions in the Cloud

* Goal: high performance, strong consistency,
elasticity, and loose coupling

 Centiman: OCC-based transaction engine on top
of a key-value store

 Sharded validation: # of validators changes
elastically, minimal points of synchronization, no
shared state

 Watermarks: lazily propagate info about global
state, optimize read-only transactions

Sharded Validation & Watermarks

* Partitioned OCC validators: commit only if all agree
* Problem: spurious aborts
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Txn aborts but Validator 2
stores write set and uses it
to validate future txns;
may abort unnecessarily

* Solution: watermarks lazily propagate through
system info about completed transactions

»Each read associated with a read watermark
»Bad write sets "age out"
» Local check optimization for read-only txns

Evaluation: Elastic Scaling

 Vxy - start with x validators, scaletoy
* Watermarks updated every 10K transactions
* Scaling starts at 60s, ends at 120s
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new Vvalidator has insufficient
state to validate

* NO spurious aborts possible
with one validator
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Centiman System Architecture

Global Master

monitors load, handles scaling/
migration/failure recovery

Validator Validator Validator

success/failure validation validation requests incl.

. responses xact read/write sets
Processing Client

Subsystem PrOCESSOrS issue xacts/ get
responses

get/put requests in read/
write phase resp.
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Elastic Scaling for Validation

* [nitialization: choose new data partitioning
between validators

* Transition: processors send validation requests
under both old and new partitioning

» Under new partitioning, initially validators
have insufficient state; abort conservatively

» Authoritative decisions made under old
partiioning
 Switch: when validators have sufficient state,
switch over to new partitioning

Evaluation: Benchmarks

* Stress validators with up to 50 storage nodes and
50 processors
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