
Auto-Approximation of Graph Computing
Zechao Shang, Jeffrey Xu Yu
The Chinese University of Hong Kong

Motivation

I Why Approximate?
I Big data: GB, TB, PB, EB, and still increasing.
I Slow algorithm: from O(n2) to NP-Complete everywhere.
I Approximate or not approximate?

I Big data beats clever algorithm.
I Approximated answers are usually sufficient for analytics.
I Approximated good vs. exact bad. Which will you choose?

I Answer delayed is answer denied.

I Why Auto?
I Developing “big data” solution is hard.

That’s why we are having this conference.
I Designing approximation algorithms is hard.
I Designing distributed approx. algorithms is hard + hard.

I Our Target
I Minimum level of user involvement.
I Approximation “for dummies”.
I Ultimate Goal: “One button” approximation.

Our approach

I Sample the PROGRAM, not the GRAPH!
I Why graph sampling is NOT working:

I The vertices and edges are not independent at all.
I The “connections” are exactly what we care most.

I How we do it?
I Background: iterative, vertex-centric graph analytics.
I We ignore some of the program instructions. That’s it!
I And carefully calibrate the answer to keep it unbiased.

(See below.)

I Why it works?
I Can we always do it?

I Mostly. Even for complex queries, their vertex-centric instructions
are usually simple and regular.

I Is the error small?
I Mostly. Under mild assumptions, we show the error will converge

(to a small value).
I We analyze it by analogizing it to the social network information

diffusion and denote it as error drifting. Check paper for details.

Toolbox for Program Sampling

I For example, if the user sums all incoming
messages, we sample each five of them.
I This is not graph sampling!
I We find such opportunities using program analyzing.
I And compensate the final sum to keep it unbiased.

I Other alternatives:
I Memorization: remember past answers.
I Task skipping: take a nap this time. Work next call.
I Interpolation: simple function replace complex one.
I System function replacement: 1 + x for exp(x).
I And still extending!

Does it work?
We conducted experiments on a wide spectrum of algorithms
and datasets.
They demonstrates our approach works quite well on both
convex and non-convex (!), continuous and discrete (!) cases.
x-axis is relative computation time compared to the original (un-approx.) algorithm, y-axis is
relative error (in log scale), dots for datasets. Dot size for data size.

10-4

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

(a)BFS

10-4

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

(b)Bipartite Match

10-4

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

(c)Connected Components

10-4

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

(d)Diameter

10-4

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

(e)k-Means

10-4

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

(f)Page Rank

10-4

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

(g)SSSP

10-4

10-3

10-2

10-1

100

 0 0.2 0.4 0.6 0.8 1

(h)Triangle Count.

Opportunities and Challenges

By manipulating parameters it generates a wide spread trade-off
between accuracy and time. We are investigating how to make
full use of it. (Cost model? Discussions are welcomed.)
x-axis is relative computation time compared to the original (un-approx.) algorithm, y-axis is
relative error (in log scale), dots for combinations of parameters.

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Works for both synchronize and asynchronize computing. We
will try distributed environment later.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0 5*10
4

10
5

1.5*10
5

re
la

.
e

rr
o

r
(i
n

 l
o

g
)

time (ms)

Original
Approximated

(a)PR in Async.

10
-3

10
-2

10
-1

10
0

0 10
6

2*10
6

3*10
6

4*10
6

re
la

.
e

rr
o

r
(i
n

 l
o

g
)

time (ms)

Original
Approximated

(b)PR in Sync.

