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Motivation

I Why Approximate?
I Big data: GB, TB, PB, EB, and still increasing.
I Slow algorithm: from O(n2) to NP-Complete everywhere.
I Approximate or not approximate?

I Big data beats clever algorithm.
I Approximated answers are usually sufficient for analytics.
I Approximated good vs. exact bad. Which will you choose?

I Answer delayed is answer denied.

I Why Auto?
I Developing “big data” solution is hard.

That’s why we are having this conference.
I Designing approximation algorithms is hard.
I Designing distributed approx. algorithms is hard + hard.

I Our Target
I Minimum level of user involvement.
I Approximation “for dummies”.
I Ultimate Goal: “One button” approximation.

Our approach

I Sample the PROGRAM, not the GRAPH!
I Why graph sampling is NOT working:

I The vertices and edges are not independent at all.
I The “connections” are exactly what we care most.

I How we do it?
I Background: iterative, vertex-centric graph analytics.
I We ignore some of the program instructions. That’s it!
I And carefully calibrate the answer to keep it unbiased.

(See below.)

I Why it works?
I Can we always do it?

I Mostly. Even for complex queries, their vertex-centric instructions
are usually simple and regular.

I Is the error small?
I Mostly. Under mild assumptions, we show the error will converge

(to a small value).
I We analyze it by analogizing it to the social network information

diffusion and denote it as error drifting. Check paper for details.

Toolbox for Program Sampling

I For example, if the user sums all incoming
messages, we sample each five of them.
I This is not graph sampling!
I We find such opportunities using program analyzing.
I And compensate the final sum to keep it unbiased.

I Other alternatives:
I Memorization: remember past answers.
I Task skipping: take a nap this time. Work next call.
I Interpolation: simple function replace complex one.
I System function replacement: 1 + x for exp(x).
I And still extending!

Does it work?
We conducted experiments on a wide spectrum of algorithms
and datasets.
They demonstrates our approach works quite well on both
convex and non-convex (!), continuous and discrete (!) cases.
x-axis is relative computation time compared to the original (un-approx.) algorithm, y-axis is
relative error (in log scale), dots for datasets. Dot size for data size.
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(h)Triangle Count.

Opportunities and Challenges

By manipulating parameters it generates a wide spread trade-off
between accuracy and time. We are investigating how to make
full use of it. (Cost model? Discussions are welcomed.)
x-axis is relative computation time compared to the original (un-approx.) algorithm, y-axis is
relative error (in log scale), dots for combinations of parameters.
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Works for both synchronize and asynchronize computing. We
will try distributed environment later.
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(a)PR in Async.
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(b)PR in Sync.


