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RESULTS
–  Compaction server assumes execution and overheads.
 –  Compactions are shorter; read latency improves.
–  Cache misses less costly; reads faster over network vs. disk.
–  Incremental warmup eliminates cache misses altogether.
–  Multiple compaction servers allow for load balancing.
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EXPERIMENTS

Fig. 2 – Remote Caching Fig. 3 – Incremental Warmup

Fig. 4 – Standard
5x RS - No CS

Fig. 5 – Offloaded
5x RS - 1x CS

Fig. 1 – Standard Compaction
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Compactions pile up, overloading 
the single compaction server.

–  YCSB update workload 
    triggers compactions.
 

–  YCSB read worklaod 
    measures get/scan latency.
 

–  1x region server (RS),
    1x compaction server (CS).

Fig. 6 – Under-Provisioned
10x RS - 1x CS

Fig. 7 – Balanced
10x RS - 2x CS

Compactions are distributed 
across two compaction servers.

SOLUTION
≡  Compaction Offloading
     –  Offload compactions to specialized compaction servers.
     –  Dedicate region server resources to workload execution.
≡  Remote Caching
     –  Compaction server caches compaction results locally.
     –  Region server reads back results over network.
≡  Incremental Warmup
     –  Do not evict invalidated file blocks en masse.
     –  Gradually phase old data out, block by block.
     –  Replace with new data from remote cache.
     –  Sequential transfer (files are already sorted).
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COMPACTIONS
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1. Reduce compaction overheads on region server.
2. Prevent large spikes in read latency.

GOALS

Periodic data maintenance for multi-version stores
 –  Consolidate updates into existing dataset

Prevent read latency from degrading over time
 –  Reduce number of overlapping data files to be read

Compactions are expensive! 
 1. During execution: compete with workload for resources
 2. After execution: degrade read latency severely
  –  Input files removed, evicted en masse from cache
   ► Cache misses
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