
REFERENCES
[1] MY Ahmad and B Kemme. Compaction Management in Distributed Key-Value
Datastores. PVLDB 8(8):850–861, 2015.
[2] AS Aiyer, M Bautin, GJ Chen, P Damania, P Khemani, K Muthukkaruppan, K
Ranganathan, N Spiegelberg, L Tang, and M Vaidya. Storage infrastructure
behind Facebook Messages: Using HBase at scale. IEEE Data Eng. Bull.,
35(2):4–13, 2012.
[3] F Chang, J Dean, S Ghemawat, WC Hsieh, DA Wallach, M Burrows, T Chandra,
A Fikes, and R Gruber. Bigtable: A distributed storage system for structured
data. In OSDI, pages 205–218, 2006.
[4] PE O'Neil, E Cheng, D Gawlick, and EJ O'Neil. The log-structured merge-tree
(LSM-tree). Acta Inf., 33(4):351–385, 1996.
[5] Apache HBase. http://hbase.apache.org/
...

RESULTS
– Compaction server assumes execution and overheads.
 – Compactions are shorter; read latency improves.
– Cache misses less costly; reads faster over network vs. disk.
– Incremental warmup eliminates cache misses altogether.
– Multiple compaction servers allow for load balancing.

ACKNOWLEDGEMENTS
This work is partially funded by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and Ministère de l’Enseignement

supérieur, Recherche, Science et Technologie, Québec, Canada.

EXPERIMENTS

Fig. 2 – Remote Caching Fig. 3 – Incremental Warmup

Fig. 4 – Standard
5x RS - No CS

Fig. 5 – Offloaded
5x RS - 1x CS

Fig. 1 – Standard Compaction

SCALABILITY

0

50

100

150

200

0 3600 7200 10800

)s
m(ycnetaL

Time (s)

Get
Scan

0

50

100

150

200

0 3600 7200 10800

)s
m(ycnetaL

Time (s)

Get
Scan

0

50

100

150

200

0 3600 7200 10800
)s

m(ycnetaL
Time (s)

Get
Scan

0

50

100

150

200

0 3600 7200 10800

)s
m(ycnetaL

Time (s)

Get
Scan

0

50

100

150

200

250

0 300 600 900

)s
m(ycnetaL

Time (s)

Get
Scan

0

50

100

150

200

250

0 300 600 900
)s

m(ycnetaL

Time (s)

Get
Scan

Compactions pile up, overloading
the single compaction server.

– YCSB update workload
 triggers compactions.

– YCSB read worklaod
 measures get/scan latency.

– 1x region server (RS),
 1x compaction server (CS).

Fig. 6 – Under-Provisioned
10x RS - 1x CS

Fig. 7 – Balanced
10x RS - 2x CS

Compactions are distributed
across two compaction servers.

SOLUTION
≡ Compaction Offloading
 – Offload compactions to specialized compaction servers.
 – Dedicate region server resources to workload execution.
≡ Remote Caching
 – Compaction server caches compaction results locally.
 – Region server reads back results over network.
≡ Incremental Warmup
 – Do not evict invalidated file blocks en masse.
 – Gradually phase old data out, block by block.
 – Replace with new data from remote cache.
 – Sequential transfer (files are already sorted).

Application
HBase
Client

HBase
Master

HDFS
Master

Zoo
Keeper

Datanode

Region
Server

WAL
Block
Cache

Mem

Datanode
. . .

. . .
Region
Server

WAL
Mem Block

Cache

Compaction
Manager

Compaction
Server

Datanode

Block
Cache

COMPACTIONS

0

50

100

150

200

250

0 300 600 900

)s
m(ycnetaL

Time (s)

Get
Scan

1. Reduce compaction overheads on region server.
2. Prevent large spikes in read latency.

GOALS

Periodic data maintenance for multi-version stores
 – Consolidate updates into existing dataset

Prevent read latency from degrading over time
 – Reduce number of overlapping data files to be read

Compactions are expensive!
 1. During execution: compete with workload for resources
 2. After execution: degrade read latency severely
 – Input files removed, evicted en masse from cache
 ► Cache misses

COMPACTRAM

UPDATES

COM
PACT

W
AR

M
U

P

Compaction management in
distributed key-value datastores

Muhammad Yousuf Ahmad Bettina Kemme
muhammad.ahmad2@mail.mcgill.ca kemme@cs.mcgill.ca

