
Sheep: A Scalable Distributed Graph Partitioner
Daniel Margo dmargo@eecs.harvard.edu Margo Seltzer margo@eecs.harvard.edu

Sheep finds good partitions!

Problem
Graph partitioning enables efficient computing on very
large graphs. But how can we efficiently find partitions
of graphs in the absence of an a priori partitioning?

Solution
Sheep is a scalable distributed graph partitioning
algorithm with a map-reduce structure. Sheep's runtime
and results are independent of a priori partitions, so the
input graph can be arbitrarily distributed among jobs.

Overview
Sheep partitions a graph by:
1. Sorting the vertices,
2. Reducing the graph to an elimination tree,
3. Partitioning that elimination tree, and
4. Translating the result into graph partitions.

An elimination tree T of a graph G is a rooted tree
where: if (X,Y) in G, then X is below Y in T or vice-versa.

Partitioning
Sheep is an edge partitioner that minimizes
communication volume. CV measures the number of
partitions that each vertex communicates with. Vertices
that communicate with more than one partition are called
border vertices. When Sheep partitions the tree, it upper
bounds the CV by bounding the set of border vertices.

3

4

57

1

2

6

1 2 3 4

56

7

Sheep is fast and scalable!

8GB commodity machine with SSD
Sheep uses cores efficiently on in-
memory graphs. Sheep is up to 6 times
faster than METIS on these graphs.
Sheep can process out of memory by
splitting the graph into working sets.

256GB cluster node with Infiniband
42 million vertices, 1.5 billion edges
Scaling is limited by the reduce step.
Sheep is more than 8 times faster than
Fennel, which takes 22 minutes. METIS
cannot process this graph in 256GB.

106 million vertices, 3.74 billion edges
Sheep is ultimately data-bound on one
node, but it profits further by scaling
horizontally across memory controllers.

Sheep's partition costs are competitive with other
partitioners. METIS produces better partitions, but
at great expense. Sheep is even competitive with
METIS for small partition counts. Quality data is in
part reproduced from work by Bourse et al. [2].

Sheep's partitions improve with a better sort order.
With a high-quality order, Sheep's partitions are
comparable to METIS. At present these orders are
expensive to compute, but this is exciting for future
work in e.g. graph database cracking.

Algorithm
Sheep creates its tree via a union-find algorithm. The
tree depends on the graph and the vertex sort order.

Distribution
Sheep can split a graph into subgraphs, map
trees for each, and then reduce the trees into
a final, valid tree for the original graph.

Sorting
Sheep's partitions are of highest quality
when the elimination tree is short.

It is well-known that “power law” graphs
disconnect quickly if one deletes vertices
in degree order [1]. We show that this is
equivalent to finding a short e-tree.

For more info, please see our paper in VLDB'15!
https://github.com/dmargo/sheep

3

4

57

1

2

1 2 3 4

56

7

6

1 2 3 4

5

7 3

4

57

1

2

6

split

create trees

union + create trees

union + create trees

G

G1 G2 G3 G4

T1 T2 T3 T4

T12 T34

T

1 2 3 4

5

7

1 2 3 4

5

7

3

4

57

1

2

1 2 3 4

56

7

6

1 2 3 4

5

7 3

4

57

1

2

6

split

create trees

union + create trees

union + create trees

G

G1 G2 G3 G4

T1 T2 T3 T4

T12 T34

T

1 2 3 4

5

7

1 2 3 4

5

7

3

4

57

1

2

1 2 3 4

56

7

6

1 2 3 4

5

7 3

4

57

1

2

6

split

create trees

union + create trees

union + create trees

G

G1 G2 G3 G4

T1 T2 T3 T4

T12 T34

T

1 2 3 4

5

7

1 2 3 4

5

7

3

4

57

1

2

1 2 3 4

56

7

6

1 2 3 4

5

7 3

4

57

1

2

6

split

create trees

union + create trees

union + create trees

G

G1 G2 G3 G4

T1 T2 T3 T4

T12 T34

T

1 2 3 4

5

7

1 2 3 4

5

7

References
D. Margo, M. Seltzer. A scalable distributed graph partitioner.
Proceedings of the VLDB Endowment, Vol. 8, No. 12.

[1] S. Iyer, T. Killingback, B. Sundaram, and Z. Wang. Attack
robustness and centrality of complex networks. PloS ONE,
8(4):e59613, 2013.

[2] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced graph
edge partition. 20th ACM International Conference on Know-
ledge Discovery and Data Mining, p. 1456-1465. ACM, 2014.

Decay orders on a Physicscollaboration network [1].

Let T(G,P) be the tree produced by Sheep in order P. Let
G1 and G2 be two subgraphs of G such that G1 U G2 = G.
Then, we prove that: T(G,P) = T(T(G1,P) U T(G2,P), P)

Example
Vertex 7 has 5 edges into 3 pre-
ceding union-find sets. It adopts
one child for each set. Then,
X is below 7 for all edges (X,7).

Pseudocode
Let U = (V,P) be a union-find on a set V
that chooses as each subset representative
the maximum element in that subset by a
total order P = (V,<). Let T = (V,TE) be an
elimination tree on a vertex set V.

Require: G is an undirected graph (V,E)
Require: P is a total order (V,<)
Function: Persistent_Union_Find(G,P):

U := (V,P)
T := (V,null)
For all z in V in order P do:

For all (x,z) in E, x < z do:
y = U.find(x)
If y != z then:

U.union(y,z)
TE := TE U (y,z)

3

4

57

1

2

1 2 3 4

56

7

6

3

4

57

1

2

6

split

create trees

union + create trees

union + create trees

G

G1 G2 G3 G4

T1 T2 T3 T4

T12 T34

T

1 2 3 4

5

7

1 2 3 4

5

7

1 2 3 4

56

7

G T

T G

G

T

Example: Vertex 7 is the only possible border vertex
between the left and right partition sets.

mailto:dmargo@eecs.harvard.edu
mailto:margo@eecs.harvard.edu

	Slide 1

