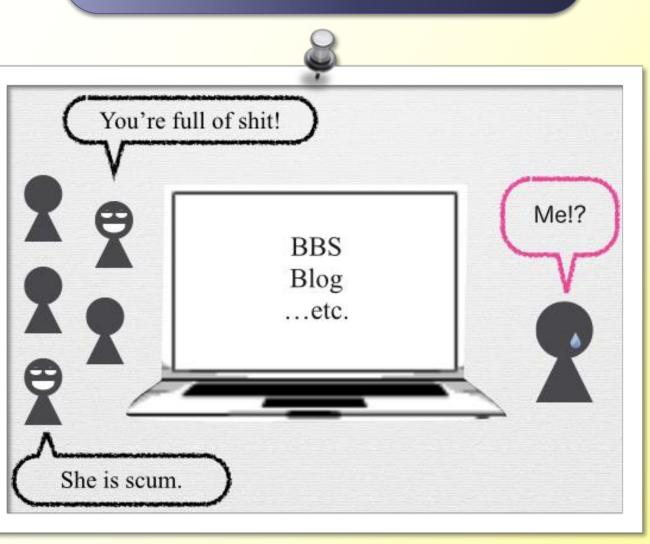


Improving Performance of Cyberbullying Detection Method with Double Filtered Point-wise Mutual Information


Suzuha Hatakeyama Kitami Institute of Technology

Fumito Masui Kitami Institute of Technology

Michal Ptaszynski **Kitami Institute of Technology** Kazuhide Yamamoto

Nagaoka University of Technology

CYBERBULLYING

Recently noticed social problem

INTERNET PATROL

- Internet monitoring by Parent-Teacher Association (PTA).
- Request site admin to remove harmful entries.
- High cost of time and fatigue for netpatrol members.

Category Relevance Maximization Method

Phrase Extraction Extract *phrases* from sentence using dependency

relations

Relevance Estimation

Calculate relevance of each phrase to seed words

Ex. "Cute girl, but bad personality." (Noun, Noun) (Noun, Verb) (Noun, Adjective) (cute, girl), (bad, personality)

Estimation Model (extended Turney's SO-PMI [3])

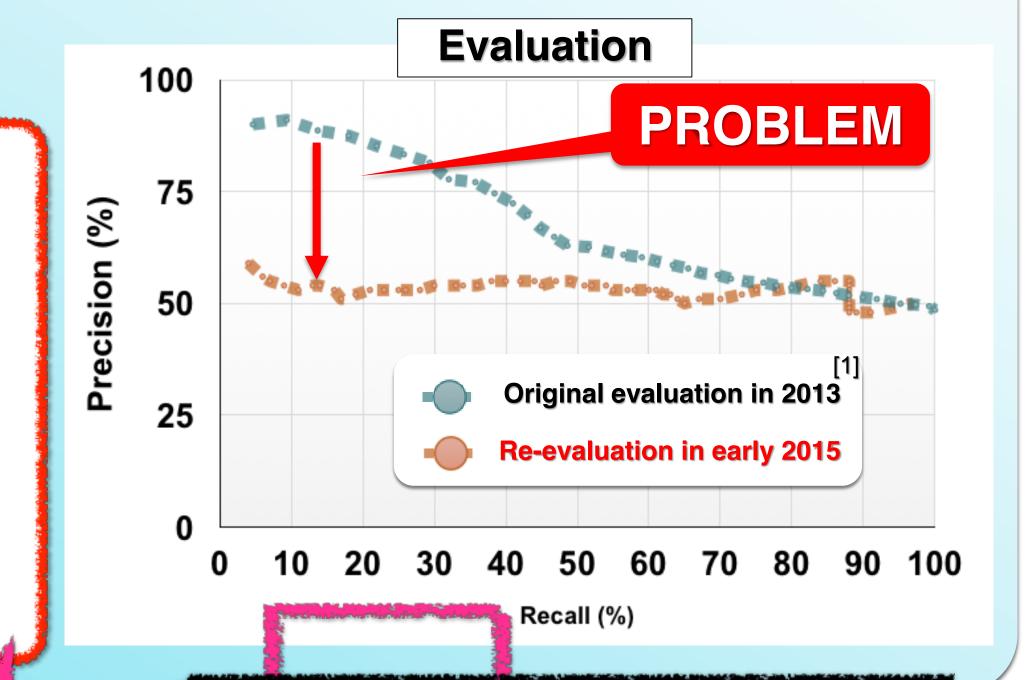
 $score = max(max(PMI(p_i, w_j)))$ Maximize category relevance of phrase p_i to seed word w_j

Typical words related to cyberbullying Category1 Category3 Category2 Obscene **Violent Abusive** words words words Annoying Sex Die Gross Kill Slut

Bl*wjob Slap

Ugly

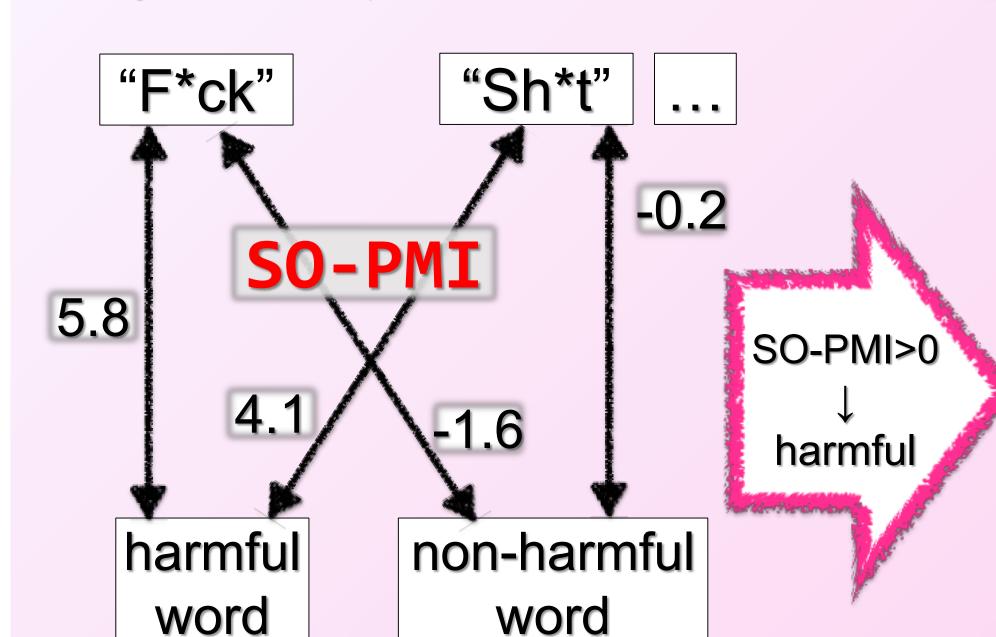
Seed words


Our research

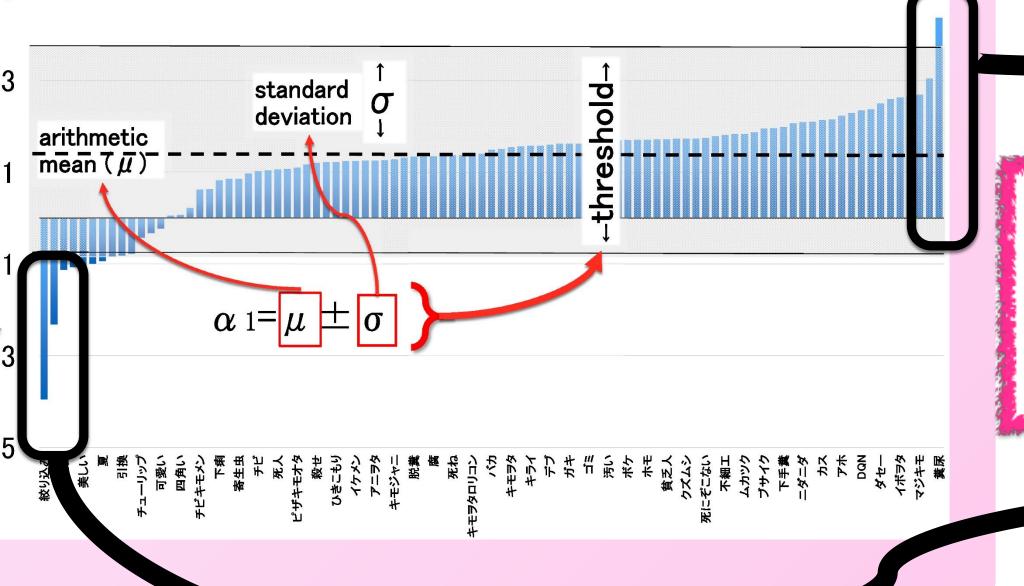
Help Internet Patrol with ICT

Performance improvement of method by Nitta et al. [1]

Automatic detection of cyberbullying entries


Automatic acquisition and update of seed words

Automatic Acquisition of Seed Words


Primary Filtering (cleaning)

Ishizaka's [2] Non-harmful seed words seed words

Secondary Filtering (optimizing)

Harmful word **Filtered** candidates seed words

Possible reasons

- page rankings change
- (2) net-patrol movement
- (3) usage policies tightening

Seed word candidate

case1:7 words obtained after Primary Filtering with [2] 17 words

case2 : 12 words

above

harmful

threshold

obtained after Primary Filtering with [1] 9 words

case3: 16 words

7 words from case1 + original 9 words [1]

case4: 21 words 12 words from case2 + original 9

words [1] case5: 5 words (baseline 1)

originally used by [2]

case6: 9 words (baseline 2) originally used by [1]

Apply in Classification

(5)

80 **75** case 2 → case 3 →case 1 BRECISION (%) 65 60 55 -case 6 **★**case 5 *****case 4 **50** 45 100 10 50 RECALL (%)

Evaluation criteria:

© Michał Ptaszyński, Suzuha Hatakeyama 2015

Evaluation

- 1 Highest F-score for longest threshold
- 2 Highest break even point (BEP) of P&R
- 3 Highest Precision in general
- 4 Largest area under the curve (AUC) of P&R (same as in [1])
- (5) Always better to simply add words?

		case1	case2	case3	case4	case5	case6		
McNemar	case5	189.00	26.88	0.83	0.30	_	16.98		
test	case6	145.00	5.80	9.47 **	10.29	18.56	_		
	* p<0.5, ** p<0.1, *** p<0.01								

tion winner

	case	case	case	case	case	case
dues	1	2	3	4	5	6
1						
2						
3						
4						

Conclusions

- Best performance was achieved by filtering methods (case1 and case2)
- Seed word filtering increases performance in general
- But too much was no good (Only secondary filtering was better than Primary + Secondary)
- Single filtering was also more time efficient
- Simply adding more words does not increase performance

REFERENCES

- [1] Taisei Nitta, Fumito Masui, Michal Ptaszynski, Yasutomo Kimura, Rafal Rzepka, Kenji Araki. 2013. **Detecting Cyberbullying Entries on Informal School Websites Based on Category** Relevance Maximization. In Proc. of IJCNLP 2013, pp. 579-586.
- [2] Tatsuya Ishizaka, Kazuhide Yamamoto. 2011. Automatic detection of sentences representing
- slandering on the Web (In Japanese). Proc. of NLP2011, pp. 131-134. [3] Peter D. Turney. 2002. Thumbs Up or Thumbs Down? Semantic Orientation Applied to
- Unsupervised Classification of Reviews. In Proc. of ACL-2002, pp. 417-424, 2002. [4] Ministry of Education, Culture, Sports, Science and Technology (MEXT). 2008. "Bullying on the Net" Manual for handling and collection of cases (for schools and teachers) (in Japanese). Published by *MEXT*.