

Walking in the Cloud: Parallel SimRank at Scale

Zhenguo Li¹, Yixiang Fang², Qin Liu³, Jiefeng Cheng¹, Reynold Cheng², John C.S. Lui³

¹Huawei Noah's Ark Lab, ²HKU, ³CUHK

Graph data grows rapidly

Internet of Things
 World Wide Web

Similarity is fundamental

- 1. Information retrieval
- 2. Recommender system
- 3. Churn prediction

To compute *a_i*, we obtain *P^te_i* using Monte Carlo Simulation

- 1. Place *R* random walkers on node *i*
- 2. Each walker walks t steps along in-links
- 3. Count the distribution of walkers

Online queries

- MCSP: Monte Carlo simulation for single-pair query
- constant time complexity: O(TR)
- MCSS: Monte Carlo simulation for single-source query
 - constant time complexity: O(T²R logd)

SimRank - two objects are similar if referenced by similar objects

- It captures human perception of similarity
- It outperforms other similarity measures, such as co-citation

Three fundamental queries

- 1. Single-pair query return similarity of two nodes
- 2. Single-source query return similarity of every node to a node
- 3. All-pair query return similarity between every two nodes

□ Challenges in SimRank computation

1. High complexity: $O(n^3)$ time, $O(n^2)$ space

MCAP: Monte Carlo simulation for all-pair query

- use MCSS repeatedly; time complexity: O(nT²R logd)

Implementation on Spark Why Spark?

- General-purpose in-memory cluster computing
- Easy-to-use operations for distributed applications

Two implementation models

- Broadcasting: Graph stored in each machine
- RDD (Resilient Distributed Dataset): Graph stored in an RDD

Experiments

Setup: cluster, datasets, and default parameters

- 10 nodes (each with 16 cores, 377GB RAM, 20TB disk)

Dataset	Nodes	Edges	Size	Parameter	Value	Meaning
wiki-vote	7.1K	103K	476.8KB	С	0.6	decay factor of SimRank
wiki-talk	2.4M	5M	45.6MB	Т	10	# of walk steps
twitter-2010	42M	1.5B	11.4GB	L	3	# of iterations in Jacobi method
uk-unioni	131M	5.5B	48.3GB	R	100	# of walkers in simulating a _i
clue-web	1B	42.6 B	401.1GB	R'	10,000	# of walkers in MCSP and MCSS

- 2. Heavy computational dependency (hard to be parallelized)
- 3. Not allow querying similarities individually

CloudWalker – Big SimRank, instant response

Contribution

- 1. Enable parallel SimRank computation
- 2. Test on the largest graph, clue-web(|V|=1B, |E|=43B)

Problem

SimRank Decomposition $S = cP^{\top}DP + D$ *P*: the transition matrix on graph *D*: the diagonal correction matrix to be estimated

 $S = D + cP^{\top}DP + c^2P^{2\top}DP^2 + \cdots$

how to compute *D* for big graph ?
 how to query efficiently given *D* ?

Offline indexing
$$x = [D_{11}, D_{22}, \dots, D_{n_1}]^{\top}$$

10x larger than the largest graph reported on SimRank

Effectiveness: CloudWalker converges quickly

Broadcasting is more efficient, but RDD is more scalable

Broadcasting								
Dataset	D	MCSP	MCSS					
wiki-vote	7s	0.004s	0.042s					
wiki-talk	59s	0.046s	0.179s					
witter-2010	975s	0.049s	0.281s					
uk-union	3323s	0.025s	0.292s					

RDD							
Dataset	D	MCSP	MCSS				
wiki-vote	50s	2.7s	2.9s				
wiki-talk	620s	8.5s	13.9s				
twitter-2010	8424s	11.8s	22.3s				
uk-union	6.4h	13.1s	27.2s				

1. Key observation: self-similarity is **1.0 Indexing linear system** $a_i^{\top}x = 1, i = 1, 2, ..., n$

2. Generate a_i 's by Monte Carlo simulation, in parallel

 $x_{i}^{(k+1)} = \frac{1}{a_{ii}} (1 - \sum_{i \neq i} a_{ij} x_{j}^{(k)})$

3. Solve the linear system via Jacobi method, in parallel

CloudWalker outperforms state of the art

Preprocessing, single-pair and single-source queries

Detect	FMT [2]				LIN [3]		CloudWalker		
Dataset	Prep.	SP.	SS.	Prep.	SP.	SS.	Prep.	SP.	SS.
wiki-vote	43.4s	30.4ms	42.5s	187ms	0.61ms	5.3ms	7s	4ms	42ms
wiki-talk	N/A	N/A	N/A	N/A	N/A	N/A	59s	46ms	180ms
twitter-2010	-	-	-	14376s	3.17s	11.9s	975s	49ms	281ms
uk-union	-	-	-	8291s	9.42s	21.7s	3323s	25ms	291ms
clue-web	-	-	-	-	-	-	110.2h	64.0s	188 s

[1] G. Jeh and J. Widom. Simrank: a measure of structural-ctontext similarity. *KDD*'02.
[2] D. Fogaras and B. Racz. Scaling link-based similarity search. *WWW*'05.
[3] T. Maehara, et al. Efficient simrank computation via linearization. *CORR*'14.