
Jacobi Method

Update x
In Parallel

 Contribution
 1. Enable parallel SimRank computation
 2. Test on the largest graph, clue-web(|V|=1B, |E|=43B)

 Problem
 SimRank Decomposition
 P: the transition matrix on graph
 D: the diagonal correction matrix to be estimated

 1. how to compute D for big graph ?
 2. how to query efficiently given D ?

 Offline indexing
 1. Key observation: self-similarity is 1.0
 Indexing linear system

 here

 2. Generate by Monte Carlo
 simulation, in parallel

 3. Solve the linear system via Jacobi
 method, in parallel

 Graph data grows rapidly
 1. Internet of Things
 2. World Wide Web

 Similarity is fundamental
 1. Information retrieval
 2. Recommender system
 3. Churn prediction

 SimRank - two objects are similar if referenced by similar objects

 Three fundamental queries
 1. Single-pair query – return similarity of two nodes
 2. Single-source query – return similarity of every node to a node
 3. All-pair query – return similarity between every two nodes

 Challenges in SimRank computation
 1. High complexity: O(n3) time, O(n2) space
 2. Heavy computational dependency (hard to be parallelized)
 3. Not allow querying similarities individually

SimRank [1]

Experiments

1Huawei Noah’s Ark Lab, 2HKU, 3CUHK

Zhenguo Li1, Yixiang Fang2, Qin Liu3, Jiefeng Cheng1, Reynold Cheng2, John C.S. Lui3

Walking in the Cloud: Parallel SimRank at Scale

' (), ' ()

1,

(,)
(', '),

() () i In i j In j

i j
s i j c

s i j i j
In i In j

CloudWalker – Big SimRank, instant response

 [1] G. Jeh and J. Widom. Simrank: a measure of structural-ctontext similarity. KDD’02.
 [2] D. Fogaras and B. Racz. Scaling link-based similarity search. WWW’05.
 [3] T. Maehara, et al. Efficient simrank computation via linearization. CORR’14.

(1) ()1
(1)k k

i ij j

j iii

x a x
a

Effectiveness: CloudWalker converges quickly

Setup: cluster, datasets, and default parameters
- 10 nodes (each with 16 cores, 377GB RAM, 20TB disk)

Implementation on Spark

Broadcasting is more efficient, but RDD is more scalable

CloudWalker outperforms state of the art

MCSP: Monte Carlo simulation for single-pair query

MCSS: Monte Carlo simulation for single-source query

- constant time complexity: O(TR)

MCAP: Monte Carlo simulation for all-pair query
- use MCSS repeatedly; time complexity: O(nT2R logd)

 Online queries

To compute ai, we obtain Ptei using Monte Carlo Simulation
 1. Place R random walkers on node i
 2. Each walker walks t steps along in-links
 3. Count the distribution of walkers

Dataset Nodes Edges Size

wiki-vote 7.1K 103K 476.8KB

wiki-talk 2.4M 5M 45.6MB

twitter-2010 42M 1.5B 11.4GB

uk-unioni 131M 5.5B 48.3GB

clue-web 1B 42.6B 401.1GB

Parameter Value Meaning

c 0.6 decay factor of SimRank

T 10 # of walk steps

L 3 # of iterations in Jacobi method

R 100 # of walkers in simulating ai

R’ 10,000 # of walkers in MCSP and MCSS

Dataset D MCSP MCSS

wiki-vote 7s 0.004s 0.042s

wiki-talk 59s 0.046s 0.179s

twitter-2010 975s 0.049s 0.281s

uk-union 3323s 0.025s 0.292s

10x larger than the largest graph reported on SimRank

Dataset
FMT [2] LIN [3] CloudWalker

Prep. SP. SS. Prep. SP. SS. Prep. SP. SS.

wiki-vote 43.4s 30.4ms 42.5s 187ms 0.61ms 5.3ms 7s 4ms 42ms

wiki-talk N/A N/A N/A N/A N/A N/A 59s 46ms 180ms

twitter-2010 - - - 14376s 3.17s 11.9s 975s 49ms 281ms

uk-union - - - 8291s 9.42s 21.7s 3323s 25ms 291ms

clue-web - - - - - - 110.2h 64.0s 188s

s(i,j): similarity of nodes i and j
In(i): in-neighbors of i
c: decay factor, 0<c<1

Similarity Propagation

• It captures human perception of similarity
• It outperforms other similarity measures, such as co-citation

11 22[, , ,]nnx D D D

Input graph
Node-pair graph

1, 1,2,...,ia x i n

1 1 1

0

()
T

t t t

i i i

t

a c P e P e

ia s

- constant time complexity: O(T2R logd)

Why Spark?
• General-purpose in-memory cluster computing
• Easy-to-use operations for distributed applications

Broadcasting RDD

Preprocessing, single-pair and single-source queries

wiki-vote
dataset

Dataset D MCSP MCSS

wiki-vote 50s 2.7s 2.9s

wiki-talk 620s 8.5s 13.9s

twitter-2010 8424s 11.8s 22.3s

uk-union 6.4h 13.1s 27.2s

clue-web 110.2h 64.0s 188.1s

Two implementation models
• Broadcasting: Graph stored in each machine
• RDD (Resilient Distributed Dataset): Graph stored in an RDD

2 22S D cP cDP DPP

P DS cP D

To appear in PVLDB’16

