
Jacobi Method 

Update x
In Parallel

 Contribution  
   1. Enable parallel SimRank computation 
   2. Test on the largest graph, clue-web(|V|=1B, |E|=43B)  
      

 Problem 
   SimRank Decomposition 
   P: the transition matrix on graph 
   D: the diagonal correction matrix to be estimated 
 
 
   1. how to compute D for big graph ? 
   2. how to query efficiently given D ? 
 

 Offline indexing 
   1. Key observation: self-similarity is 1.0 
       Indexing linear system  
 
       here  
       
   2. Generate         by Monte Carlo 
        simulation, in parallel 
 
   3. Solve the linear system via Jacobi  
       method, in parallel 
 

 
 

 Graph data grows rapidly 
    1. Internet of Things 
    2. World Wide Web 

 
 Similarity is fundamental 
    1. Information retrieval 
    2. Recommender system 
    3. Churn prediction 
 

 SimRank - two objects are similar if referenced by similar objects 
 
 
 
 
 
 
 
 
 
 

 Three fundamental queries 
   1. Single-pair query – return similarity of two nodes 
   2. Single-source query – return similarity of every node to a node 
   3. All-pair query – return similarity between every two nodes 
  

 Challenges in SimRank computation 
   1. High complexity: O(n3) time, O(n2) space 
   2. Heavy computational dependency (hard to be parallelized) 
   3. Not allow querying similarities individually 

SimRank [1] 

Experiments 
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Walking in the Cloud: Parallel SimRank at Scale 
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CloudWalker – Big SimRank, instant response 

      [1] G. Jeh and J. Widom. Simrank: a measure of structural-ctontext similarity. KDD’02. 
      [2] D. Fogaras and B. Racz. Scaling link-based similarity search. WWW’05. 
      [3] T. Maehara, et al. Efficient simrank computation via linearization. CORR’14.  
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Effectiveness: CloudWalker converges quickly 

Setup: cluster, datasets, and default parameters 
- 10 nodes (each with 16 cores, 377GB RAM, 20TB disk) 

Implementation on Spark 

Broadcasting is more efficient, but RDD is more scalable  

CloudWalker outperforms state of the art 

MCSP: Monte Carlo simulation for single-pair query 

MCSS: Monte Carlo simulation for single-source query 

- constant time complexity: O(TR) 

MCAP: Monte Carlo simulation for all-pair query 
- use MCSS repeatedly; time complexity: O(nT2R logd) 

 Online queries 

To compute ai, we obtain Ptei using Monte Carlo Simulation 
  1. Place R random walkers on node i 
  2. Each walker walks t steps along in-links 
  3. Count the distribution of walkers 

Dataset Nodes Edges Size 

wiki-vote 7.1K 103K 476.8KB 

wiki-talk 2.4M 5M 45.6MB 

twitter-2010 42M 1.5B 11.4GB 

uk-unioni 131M 5.5B 48.3GB 

clue-web 1B 42.6B 401.1GB 

Parameter Value Meaning 

c 0.6 decay factor of SimRank 

T 10 # of walk steps 

L 3 # of iterations in Jacobi method 

R 100 # of walkers in simulating ai 

R’ 10,000 # of walkers in MCSP and MCSS 

Dataset D MCSP MCSS 

wiki-vote 7s 0.004s  0.042s 

wiki-talk 59s 0.046s 0.179s 

twitter-2010 975s 0.049s 0.281s 

uk-union 3323s 0.025s 0.292s 

10x larger than the largest graph reported on SimRank  

Dataset 
FMT [2] LIN [3] CloudWalker 

Prep.         SP.           SS. Prep.          SP.          SS. Prep.        SP.           SS. 

wiki-vote 43.4s    30.4ms    42.5s 187ms    0.61ms    5.3ms 7s           4ms     42ms 

wiki-talk N/A          N/A        N/A N/A          N/A         N/A 59s       46ms    180ms 

twitter-2010 -            -             - 14376s      3.17s      11.9s 975s      49ms    281ms 

uk-union -            -             - 8291s       9.42s      21.7s 3323s     25ms   291ms 

clue-web -            -             - -            -             - 110.2h    64.0s     188s 

s(i,j): similarity of nodes i and j   
In(i): in-neighbors of i 
c: decay factor, 0<c<1 

Similarity Propagation  

• It captures human perception of similarity 
• It outperforms other similarity measures, such as co-citation  
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- constant time complexity: O(T2R logd) 

Why Spark? 
• General-purpose in-memory cluster computing 
• Easy-to-use operations for distributed applications 

Broadcasting  RDD  

Preprocessing, single-pair and single-source queries 

wiki-vote 
dataset 

Dataset D MCSP MCSS 

wiki-vote 50s 2.7s 2.9s 

wiki-talk 620s 8.5s 13.9s 

twitter-2010 8424s 11.8s 22.3s 

uk-union 6.4h 13.1s 27.2s 

clue-web 110.2h 64.0s 188.1s 

Two implementation models 
• Broadcasting: Graph stored in each machine 
• RDD (Resilient Distributed Dataset): Graph stored in an RDD 
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To appear in PVLDB’16 


