
Graph-based Cloud Resource Cleanup
Netanel Cohen and Anat Bremler-Barr

The Interdisciplinary Center
Herzliya, Israel

The Problem

I As time passes, organizations that use cloud computing accumulate unused
resources such as VM instances, Storage volumes and Databases. These
unused resources:
. Raise the monthly cost on public clouds.
. Reduce capacity and degrade performance on private clouds.
. Impose an additional operational burden.
. Add security concerns.

General Idea

I We propose Garbo, a system that enables cloud resource cleanup by:

1. Receiving Core Resources (i.e. used resources with non-cloud
dependencies) as input from the user.

2. Automatically generating a directed graph with cloud resources as nodes
and dependency relations (e.g. A VM using a Storage volume) as edges.

3. Performing Mark & Sweep on the graph, using Core Resources as roots.
4. Producing a report of unused resources.

Cloud Resources Graph

Figure 1: Cloud Resources Graph

Our Architecture

I Input of used Core Resources, e.g.
. Web application’s DNS record (Figure 3)
. Batch Processing Autoscaling Group

I Discovery Plugins collect resources and
relations from
. Cloud API
. Configuration Management API
. CI/CD Tools API

I The system infers all used resources using the
graph, and compiles a list of unused resources.

Figure 2: Architecture

Example: Core Resource in Web Application

Figure 3: Core Resource in Web Application

Evaluation

I Current version implements AWS discovery

. 11 Resource types, 18 Relation types

I Staging account of an anonymous company

. 168 Resources, 401 Relations

. 28 Core Resources, 8 Applications

I Results:

. 14 Unused Resources (Figure 4)

. 13 Verified by the System Administrator

. 1 Default Cloud Resource (unused, but
cannot be released)

Figure 4: Unused resources output

Related Work

I Resource Cleanup
. Poncho, Devoid et al 2013 - requires annotation per resource
. Janitor Monkey, Netflix 2013 - requires rule set per resource type

I Other usages of a resource graph
. Enterprise Topology Graphs, Binz et al 2012

Challenges & Future Work

I Dynamic cloud environments change rapidly
. Asynchronous and inconsistent APIs

I Modeling resources and relations
. Resource granularity
. Relation directionality

I Future Research
. Unique resource identification across multiple Discovery Plugins (Figure 5)
. Detect Core Resources algorithmically
. Online cleanup, using cloud logging (e.g. AWS Config, GCE Activity Logs)
. Use the graph to detect failure domains

Challenge: Unique resource identification

Figure 5: Configuration Management Discovery Plugin might identify resources using IP

addresses, while Cloud Discovery Plugin will use cloud identifiers

Code

I Our code is available under MIT License at:

. https://github.com/natict/garbo

Acknowledgments

I We are grateful to Avishai Ish-Shalom (Fewbytes) who provided helpful
comments and suggestions regarding this work.
This research was supported by the European Research Council under the
European Unions Seventh Framework Programme (FP7/2007-2013)/ERC
Grant agreement №259085.

http://www.deepness-lab.org netanel.cohentzema@post.idc.ac.il



Garbo: Graph-based Cloud Resource Cleanup

Netanel Cohen Anat Bremler-Barr
The Interdisciplinary Center Herzliya, Israel

netanel.cohentzema@post.idc.ac.il bremler@idc.ac.il

1. Summary
Over the last few years, the number of organizations deliver-
ing their applications using public or private Cloud Comput-
ing has grown drastically. Each application is usually com-
posed of many different resources, including: VM instances,
storage volumes, databases, load balancers, and more.

Allocating additional resources is simple, and is usually
accomplished by using dashboards, command-line utilities,
cloud APIs, or cloud orchestration and automation tools.

However, the longer organizations use such cloud sys-
tems, the more unused resources they accumulate, for mul-
tiple reasons: Forgetting to release all resources associated
with unused applications, Resources becoming irrelevant
over time, Network errors while using the APIs and Soft-
ware bugs.

Unused resources are a problem because they might raise
the monthly cost on public clouds, reduce capacity and de-
grade performance on private clouds, impose an additional
operational burden, and add security concerns.

In this poster, we propose Garbo, a system that given
minimal user input emits a set of unused resources.

To do that, Garbo generates a dependency graph com-
posed of cloud resources as nodes and their relations as
edges. This resource information is acquired by a set of Dis-
covery Plugins, which may use cloud APIs, configuration
management APIs, or Continues Integration APIs. These al-
low the Garbo system to easily support additional resources
residing in various public and private cloud providers.

User input to Garbo consists of a minimal set of Core
Resources which are essentially used resources with non-
cloud dependencies (eg. DNS record of a web application).
Using these Core Resources as the roots of a Mark & Sweep
process allows garbo to infer additional resources used by
each application, and effectively detect the unused resources.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Submission to SoCC ’15, August, 2015, Kohala Coast, HI, USA.

We implemented garbo with AWS discovery, evaluated
it on the staging account of an anonymous company, and
validated our results with their system administrator.

2. Related Work
While significant research efforts exist in cloud resource
management [1], there is only preliminarily work on unused
resource cleanup.

• Poncho [2], annotates instances in OpenStack and uses
these annotations to manage them. The main drawbacks
are the tedious annotation of many different instances,
and the lack of support for other cloud resources.

• Janitor Monkey [3], implements a rule-based system for
resource cleanup. Its main drawbacks are the need to
implement a different set of rules for each resource type,
and that it’s intrinsically hard to detect unused resources
with a circular dependency.

• Enterprise Topology Graphs [4] proposes a formal method
to describe cloud resources and applications topology,
but doesn’t discuss how to construct them for an existing
environment or suggests using them for resource cleanup.

Acknowledgments
We are grateful to Avishai Ish-Shalom (Fewbytes) who pro-
vided helpful comments and suggestions. This research was
supported by the European Research Council under the Eu-
ropean Unions Seventh Framework Programme (FP7/2007-
2013)/ERC Grant agreement No 259085.

References
[1] Jennings, Brendan, and Rolf Stadler. ”Resource management

in clouds: Survey and research challenges.” Journal of Network
and Systems Management (2014): 1-53.

[2] Devoid, Scott, Narayan Desai, and Lorin Hochstein. ”Poncho:
Enabling Smart Administration of Full Private Clouds.” LISA.
2013.

[3] Fu, Michael, and Cory Bennett. ”Janitor Monkey - Keeping the
Cloud Tidy and Clean.” The Netflix Tech Blog. Netflix, 13 Apr.
2013. Web. 25 June 2015.

[4] Binz, Tobias, et al. ”Formalizing the cloud through enterprise
topology graphs.” Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on. IEEE, 2012.

1


