
Earthquake: An Open-Source Framework of 

Implementation-Level Distributed System Model Checkers 
Akihiro Suda, Hitoshi Mitake, and Tomonori Fujita

(NTT Software Innovation Center)

http://osrg.github.io/earthquake/

Earthquake is Available at Docker Hub!

$ docker run –i –t osrg/earthquake

Epic Win: Found Distributed Race Condition of Apache ZooKeeper

Leader Observer

ZAB  2888/tcp

FLE  3888/tcp

Bug: “Observer” node cannot be promoted to “Participant”

The bug was marked critical by ZK community.

We sent a bug-fix to ZK community and the fix was merged.

https://issues.apache.org/jira/browse/ZOOKEEPER-2212

Without Earthquake, the bug could not be reproduced in  

5,000 experiments. (about 60 hours)

RACE

Related Work

Less Knowledge

SAMC [OSDI’14]

EQ

MODIST [NSDI’09]

Jepsen
Chaos Monkey

SPIN
JPF

Novelty of Earthquake:

✔Just Requires Protocol-Level Knowledge*

✔Applicable to Real Impl. in Any Language*

✔Supports User-Written Heuristic Plug-In

✔Open Source (Apache License 2.0)
* OpenFlow/netfilter packet events

Not model checker

Not impl.-level model checker

Not applicable to large software;

Java-only

Partition-tolerance test  only

Requires src-level knowledge;

Java-only

Win32 API only; paper only

Exhaustive

dBug [SSV’10]dynlinked POSIX/MPI API only

Problem: Real Distributed Systems in Clouds Are Bug-Prone

e.g. Cassandra, Flume, HBase, HDFS, MapReduce and ZooKeeper

3 bug tickets per day on average [Gunawi et al.  SoCC’14]

Almost half of them takes over 1 month to debug

→ Cloud-computing business faces risk of unavailability and data corruption!

Our main scope of interest: distributed race condition, fault tolerance bug

(Such bugs are especially peculiar to distributed systems)

Solution: Model Checker for Unmodified Distributed Systems 

Linux netfilter NFQUEUE 

OpenFlow SDN Switch + Ryu

byteman (bytecode injection)

Earthquake

Packet Event (with L7 info)

ditto

Explores implicit state space by reordering several events to find bugs

Random / DFS / BFS / ..

Target-specific
exploration heuristic

Event History DB

ev1

ev2

ev2

ev1



Earthquake: An Open-Source Framework of  

Implementation-Level Distributed System Model Checkers
Akihiro Suda, Hitoshi Mitake, and Tomonori Fujita 

NTT Software Innovation Center 

{lastname.firstname}@lab.ntt.co.jp

1. Introduction 
Real implementation of distributed systems in clouds are bug-

prone. Even matured and well unit-tested softwares (e.g. 

Cassandra, Flume, HBase, HDFS, MapReduce and ZooKeeper 

[1]), many bugs of them are being reported every day, and most 

of bugs need long time to get resolved. Such a bug exposes 

cloud-computing business to risk of unavailability and data 

corruption. 

Some existing studies (e.g. [2]) showed that distributed system 

model checkers (DMCKs) are effective to find such 

implementation-level bugs, especially ones related to message 

ordering and fault-tolerance. DMCKs explore state space by 

permuting messages and injected fault events in several orders 

so as to find bugs. However, applying a DMCK to a real system 

is difficult, because DMCK requires plenty of implementation-

specific, source code-level knowledge. 

In this poster, we propose a new open-source DMCK named 

Earthquake. Earthquake is easy to use because it does not 

require source code-level knowledge, but only requires 

protocol-level knowledge to find bugs. If a user has source 

code-level knowledge, he/she can still make use of it for deeper 

state exploration. 

2. Architecture 
A typical configuration of Earthquake is shown in the other 

page. 

Orchestrator (Core part of Earthquake): Receives several 

kind of events from Inspectors, permutes them, and send back 

to Inspectors. By default, Earthquake permutes events in 

random order. A user can write his/her own permutation 

heuristic plug-in to alleviate state explosion (as in SAMC [2]) 

and find bugs efficiently. He/she can also inject fault events 

(e.g., network partition, node crash and reboot) so as to test 

fault-tolerance of the target system.  

Orchestrator also executes a workload script to run experiments, 

and a health check scripts to check whether the target system is 

hitting bugs. 

Inspectors: Inspects the target system and send events to 

Orchestrator. Currently, we have two implementations of 

Inspectors: 

Ethernet Inspector: Inspects Ethernet packets and blocks 

them until Orchestrator allows to pass. A user is required to 

write his/her own Inspector to parse semantic information of 

the packets. Note that he/she does not need source-code level 

knowledge, but just needs protocol-level knowledge to write 

an Inspector. Furthermore, Ethernet Inspector is applicable to 

programs written in any language.  

Ethernet Inspector is implemented as a Ryu SDN [3] 

application. We also provide Linux Netfilter-based 

implementation for a case where Ryu cannot be installed. 

Java Inspector: Inspects Java function calls and blocks 

them as in packets in Ethernet Inspector. A user has to decide 

which functions to be inspected. This requires enormous 

source code-level knowledge as in existing works, but 

enables much more exhaustive state exploration than 

Ethernet Inspector. Java Inspector is implemented in 

Byteman [4], which enables dynamic patching to Java 

programs without any modification to the source codes. 

These Inspectors are not exclusive. A user can use each of them 

or mix of them depending on his/her knowledge and intention. 

History DB: Records ordering of events and allows a user to 

analyze which permutation of events triggers a bug. 

3. Evaluation 
We applied Earthquake to Apache ZooKeeper using Ethernet 

Inspector without any modification to ZooKeeper. 

Earthquake successfully found a distributed race condition bug 

ZOOKEEPER-2212 that had been previously unknown.  

ZooKeeper was unintentionally dependent on a specific 

ordering of ZAB (ZooKeeper Atomic Broadcast) packets and 

FLE (Fast Leader Election) packets. When an observer in a 

ZooKeeper ensemble receives a specific kind of ZAB packet 

after receiving a specific kind of FLE packet, the observer stays 

at a weird state and cannot be promoted to a participant. 

Although Earthquake does not fully control non-determinism, 

Earthquake can easily reproduce this bug in a few experiments. 

Without Earthquake, we were not able to reproduce the bug in 

5,000 experiments. (About 60 hours) 

4. Discussion 
A major challenge still left is formulation of workloads.  

We consider a good workload is the one that is unreliable, even 

though expected to happen in real business. For example, 

dynamic reconfiguration [5] is attractive in business, as it 

makes a cloud system tolerable to seasonal traffic spikes. 

However, real implementations of dynamic reconfiguration 

tend to be bug-prone due to complex state transitions. Actually, 

we found ZOOKEEPER-2212 on the way of testing 

reconfiguration. 

We are also groping for other good workloads. 

5. Conclusion 
Earthquake is a powerful, open-source DMCK framework for 

finding implementation-level bugs of distributed systems. 

Earthquake is available for download under Apache License 

2.0 at http://osrg.github.io/earthquake/. A tutorial 

for reproduction of ZOOKEEPER-2212 is also included in this 

repository. 

References 
[1] Gunawi, et al. What Bugs Live in the Cloud? A Study of 

3000+ Issues in Cloud Systems. In SoCC ’14. 

[2] Leesatapornwongsa, et al. SAMC: Semantic-Aware Model 

Checking for Fast Discovery of Deep Bugs in Cloud 

Systems. In OSDI ‘14. 

[3] Ryu SDN Framework. http://osrg.github.io/ryu/ 

[4] Byteman. http://byteman.jboss.org/ 

[5] Shraer, et al. Dynamic Reconfiguration of Primary/Backup 

Clusters. In ATC ’12. 

Submission to SoCC ’15, August, 2015, Kohala Coast, HI, USA. 

http://osrg.github.io/earthquake/
http://osrg.github.io/ryu/
http://byteman.jboss.org/

