®NTT Earthquake: An Open-Source Framework of

Implementation-Level Distributed System Model Checkers

Akihiro Suda, Hitoshi Mitake, and Tomonori Fujita
(NTT Software Innovation Center)

http://osrqg.qithub.io/earthquake/

Problem: Real Distributed Systems in Clouds Are Bug-Prone

e.g. Cassandra, Flume, HBase, HDFS, MapReduce and ZooKeeper

-3 bug tickets per day on average [Gunawi et al. SoCC'14]

-Almost half of them takes over 1 month to debug

— Cloud-computing business faces risk of unavailability and data corruption!

Our main scope of interest: distributed race condition, fault tolerance bug
(Such bugs are especially peculiar to distributed systems)

Solution: Model Checker for Unmodified Distributed Systems

& b, java Explores implicit state space by reordering several events to find bugs

. N = — Funccalr /¢ (Random /DFS/BFS/.. |
byteman (bytecode injection) UncRet Even; Q T

c Reordereq event / fauir) [exploration heuristic I
- : 7~ OpenFlow O ev C>ev2
S e b [OpenFlow SDN Switch + Ryu] [___Packet Event (with L7 info) > :

ditto OeVZ evl 1
A s moT, oDB

Q i [

Linux netfilter NFQUEUE] ditto Earthquake Event History DB
Related Work
Exhgush\/e Novelty of Earthquake:
4 sJust Requires Protocol-Level Knowledge*
‘Not impl.-level model checker — SPIN IPF vApplicable to Real Impl. in Any Language*
Not applicable to large software; — v Supports User-Written Heuristic Plug-In
Java-only SAMC , ¢ «/Open Source (Apache License 2.0)
Requires src-level knowledge: —— AMC [0SDI'14] * OpenFlow/netfilter packet events
Java—onlv @ » LeSS Knowledge

\Win32 APl only; paperonly | ool
| dynlinked POSIX/MPI APlonly | ——— dBug {ssv’10]

/ ‘Partltlon tolerance test only‘

Jepsen - ‘Not model checker ‘
Chaos Monkey

Epic Win: Found Distributed Race COndltlon of Apache ZooKeeper

R&CE Bug: “Observer” node cannot be promoted to “Participant”
ZAB 2888/tcp eThe bug was marked critical by ZK community.
We sent a bug-fix to ZK community and the fix was merged.
https://issues.apache.org/jira/browse/ZOOKEEPER-2212
F'—E 3888/th «Without Earthquake, the bug could not be reproduced in
L eader Observer 5,000 experiments. (about 60 hours)
C 3N) Earthquake Is Available at Docker Hub!

$ docker run -i -t osrg/earthquake

Earthquake: An Open-Source Framework of

Implementation-Level Distributed System Model Checkers

Akihiro Suda, Hitoshi Mitake, and Tomonori Fujita
NTT Software Innovation Center

{lastname.firstname}@lab.ntt.co.jp

1. Introduction

Real implementation of distributed systems in clouds are bug-
prone. Even matured and well unit-tested softwares (e.g.
Cassandra, Flume, HBase, HDFS, MapReduce and ZooKeeper
[1]), many bugs of them are being reported every day, and most
of bugs need long time to get resolved. Such a bug exposes
cloud-computing business to risk of unavailability and data
corruption.

Some existing studies (e.g. [2]) showed that distributed system
model checkers (DMCKs) are effective to find such
implementation-level bugs, especially ones related to message
ordering and fault-tolerance. DMCKSs explore state space by
permuting messages and injected fault events in several orders
so as to find bugs. However, applying a DMCK to a real system
is difficult, because DMCK requires plenty of implementation-
specific, source code-level knowledge.

In this poster, we propose a new open-source DMCK named
Earthquake. Earthquake is easy to use because it does not
require source code-level knowledge, but only requires
protocol-level knowledge to find bugs. If a user has source
code-level knowledge, he/she can still make use of it for deeper
state exploration.

2. Architecture

A typical configuration of Earthquake is shown in the other
page.

Orchestrator (Core part of Earthquake): Receives several
kind of events from Inspectors, permutes them, and send back
to Inspectors. By default, Earthquake permutes events in
random order. A user can write his/her own permutation
heuristic plug-in to alleviate state explosion (as in SAMC [2])
and find bugs efficiently. He/she can also inject fault events
(e.g., network partition, node crash and reboot) so as to test
fault-tolerance of the target system.

Orchestrator also executes a workload script to run experiments,
and a health check scripts to check whether the target system is
hitting bugs.

Inspectors: Inspects the target system and send events to
Orchestrator. Currently, we have two implementations of
Inspectors:

Ethernet Inspector: Inspects Ethernet packets and blocks
them until Orchestrator allows to pass. A user is required to
write his/her own Inspector to parse semantic information of
the packets. Note that he/she does not need source-code level
knowledge, but just needs protocol-level knowledge to write
an Inspector. Furthermore, Ethernet Inspector is applicable to
programs written in any language.

Ethernet Inspector is implemented as a Ryu SDN [3]
application. We also provide Linux Netfilter-based
implementation for a case where Ryu cannot be installed.

Java Inspector: Inspects Java function calls and blocks
them as in packets in Ethernet Inspector. A user has to decide
which functions to be inspected. This requires enormous
source code-level knowledge as in existing works, but
enables much more exhaustive state exploration than

Submission to SoCC 15, August, 2015, Kohala Coast, HI, USA.

Ethernet Inspector. Java Inspector is implemented in
Byteman [4], which enables dynamic patching to Java
programs without any modification to the source codes.

These Inspectors are not exclusive. A user can use each of them
or mix of them depending on his/her knowledge and intention.

History DB: Records ordering of events and allows a user to
analyze which permutation of events triggers a bug.

3. Evaluation
We applied Earthquake to Apache ZooKeeper using Ethernet
Inspector without any modification to ZooKeeper.

Earthquake successfully found a distributed race condition bug
ZOOKEEPER-2212 that had been previously unknown.

ZooKeeper was unintentionally dependent on a specific
ordering of ZAB (ZooKeeper Atomic Broadcast) packets and
FLE (Fast Leader Election) packets. When an observer in a
ZooKeeper ensemble receives a specific kind of ZAB packet
after receiving a specific kind of FLE packet, the observer stays
at a weird state and cannot be promoted to a participant.

Although Earthquake does not fully control non-determinism,
Earthquake can easily reproduce this bug in a few experiments.
Without Earthquake, we were not able to reproduce the bug in
5,000 experiments. (About 60 hours)

4. Discussion
A major challenge still left is formulation of workloads.

We consider a good workload is the one that is unreliable, even
though expected to happen in real business. For example,
dynamic reconfiguration [5] is attractive in business, as it
makes a cloud system tolerable to seasonal traffic spikes.
However, real implementations of dynamic reconfiguration
tend to be bug-prone due to complex state transitions. Actually,
we found ZOOKEEPER-2212 on the way of testing
reconfiguration.

We are also groping for other good workloads.

5. Conclusion
Earthquake is a powerful, open-source DMCK framework for
finding implementation-level bugs of distributed systems.

Earthquake is available for download under Apache License
2.0 at http://osrg.github.io/earthquake/. A tutorial
for reproduction of ZOOKEEPER-2212 is also included in this
repository.

References
[1] Gunawi, et al. What Bugs Live in the Cloud? A Study of
3000+ Issues in Cloud Systems. In SoCC /4.

[2] Leesatapornwongsa, et al. SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud
Systems. In OSDI ‘i4.

[3] Ryu SDN Framework. http://osrg.github.io/ryu/
[4] Byteman. http://byteman. jboss.org/

[5] Shraer, et al. Dynamic Reconfiguration of Primary/Backup
Clusters. In ATC ’12.

http://osrg.github.io/earthquake/
http://osrg.github.io/ryu/
http://byteman.jboss.org/

