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Problem: Real Distributed Systems in Clouds Are Bug-Prone

e.g. Cassandra, Flume, HBase, HDFS, MapReduce and ZooKeeper

-3 bug tickets per day on average [Gunawi et al. SoCC'14]

-Almost half of them takes over 1 month to debug

— Cloud-computing business faces risk of unavailability and data corruption!

Our main scope of interest: distributed race condition, fault tolerance bug
(Such bugs are especially peculiar to distributed systems)

Solution: Model Checker for Unmodified Distributed Systems
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Epic Win: Found Distributed Race COndltlon of Apache ZooKeeper

R&CE Bug: “Observer” node cannot be promoted to “Participant”
ZAB 2888/tcp eThe bug was marked critical by ZK community.
We sent a bug-fix to ZK community and the fix was merged.
https://issues.apache.org/jira/browse/ZOOKEEPER-2212
F'—E 3888/th «Without Earthquake, the bug could not be reproduced in
L eader Observer 5,000 experiments. (about 60 hours)
C 3N ) Earthquake Is Available at Docker Hub!

$ docker run -i -t osrg/earthquake
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1. Introduction

Real implementation of distributed systems in clouds are bug-
prone. Even matured and well unit-tested softwares (e.g.
Cassandra, Flume, HBase, HDFS, MapReduce and ZooKeeper
[1]), many bugs of them are being reported every day, and most
of bugs need long time to get resolved. Such a bug exposes
cloud-computing business to risk of unavailability and data
corruption.

Some existing studies (e.g. [2]) showed that distributed system
model checkers (DMCKs) are effective to find such
implementation-level bugs, especially ones related to message
ordering and fault-tolerance. DMCKSs explore state space by
permuting messages and injected fault events in several orders
so as to find bugs. However, applying a DMCK to a real system
is difficult, because DMCK requires plenty of implementation-
specific, source code-level knowledge.

In this poster, we propose a new open-source DMCK named
Earthquake. Earthquake is easy to use because it does not
require source code-level knowledge, but only requires
protocol-level knowledge to find bugs. If a user has source
code-level knowledge, he/she can still make use of it for deeper
state exploration.

2. Architecture

A typical configuration of Earthquake is shown in the other
page.

Orchestrator (Core part of Earthquake): Receives several
kind of events from Inspectors, permutes them, and send back
to Inspectors. By default, Earthquake permutes events in
random order. A user can write his/her own permutation
heuristic plug-in to alleviate state explosion (as in SAMC [2])
and find bugs efficiently. He/she can also inject fault events
(e.g., network partition, node crash and reboot) so as to test
fault-tolerance of the target system.

Orchestrator also executes a workload script to run experiments,
and a health check scripts to check whether the target system is
hitting bugs.

Inspectors: Inspects the target system and send events to
Orchestrator. Currently, we have two implementations of
Inspectors:

Ethernet Inspector: Inspects Ethernet packets and blocks
them until Orchestrator allows to pass. A user is required to
write his/her own Inspector to parse semantic information of
the packets. Note that he/she does not need source-code level
knowledge, but just needs protocol-level knowledge to write
an Inspector. Furthermore, Ethernet Inspector is applicable to
programs written in any language.

Ethernet Inspector is implemented as a Ryu SDN [3]
application. We also provide Linux Netfilter-based
implementation for a case where Ryu cannot be installed.

Java Inspector: Inspects Java function calls and blocks
them as in packets in Ethernet Inspector. A user has to decide
which functions to be inspected. This requires enormous
source code-level knowledge as in existing works, but
enables much more exhaustive state exploration than
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Ethernet Inspector. Java Inspector is implemented in
Byteman [4], which enables dynamic patching to Java
programs without any modification to the source codes.

These Inspectors are not exclusive. A user can use each of them
or mix of them depending on his/her knowledge and intention.

History DB: Records ordering of events and allows a user to
analyze which permutation of events triggers a bug.

3. Evaluation
We applied Earthquake to Apache ZooKeeper using Ethernet
Inspector without any modification to ZooKeeper.

Earthquake successfully found a distributed race condition bug
ZOOKEEPER-2212 that had been previously unknown.

ZooKeeper was unintentionally dependent on a specific
ordering of ZAB (ZooKeeper Atomic Broadcast) packets and
FLE (Fast Leader Election) packets. When an observer in a
ZooKeeper ensemble receives a specific kind of ZAB packet
after receiving a specific kind of FLE packet, the observer stays
at a weird state and cannot be promoted to a participant.

Although Earthquake does not fully control non-determinism,
Earthquake can easily reproduce this bug in a few experiments.
Without Earthquake, we were not able to reproduce the bug in
5,000 experiments. (About 60 hours)

4. Discussion
A major challenge still left is formulation of workloads.

We consider a good workload is the one that is unreliable, even
though expected to happen in real business. For example,
dynamic reconfiguration [5] is attractive in business, as it
makes a cloud system tolerable to seasonal traffic spikes.
However, real implementations of dynamic reconfiguration
tend to be bug-prone due to complex state transitions. Actually,
we found ZOOKEEPER-2212 on the way of testing
reconfiguration.

We are also groping for other good workloads.

5. Conclusion
Earthquake is a powerful, open-source DMCK framework for
finding implementation-level bugs of distributed systems.

Earthquake is available for download under Apache License
2.0 at http://osrg.github.io/earthquake/. A tutorial
for reproduction of ZOOKEEPER-2212 is also included in this
repository.

References
[1] Gunawi, et al. What Bugs Live in the Cloud? A Study of
3000+ Issues in Cloud Systems. In SoCC /4.

[2] Leesatapornwongsa, et al. SAMC: Semantic-Aware Model
Checking for Fast Discovery of Deep Bugs in Cloud
Systems. In OSDI ‘i4.

[3] Ryu SDN Framework. http://osrg.github.io/ryu/
[4] Byteman. http://byteman. jboss.org/

[5] Shraer, et al. Dynamic Reconfiguration of Primary/Backup
Clusters. In ATC ’12.



http://osrg.github.io/earthquake/
http://osrg.github.io/ryu/
http://byteman.jboss.org/

