BFT-BENCH: FRAMEWORK TO EVALUATE ROBUSTNESS AND EFFECTIVENESS OF BFT PROTOCOLS IN PRACTICE

Divya Gupta, Lucas Perronne University of Grenoble, LIG, France {Divya.Gupta, Lucas.Perronne}@imag.fr

Sara Bouchenak INSA Lyon, LIRIS, France Sara.Bouchenak@insa-lyon.fr

- Byzantine Fault Tolerance (BFT) protocols aim to tolerate arbitrary failures using replication techniques while maintaining consistency across replicas.
- BFT protocols aim to improve system's dependability & performance while ensuring its correctness.

CONTRIBUTIONS

- BFT-Bench, the first framework for benchmarking and comparing BFT protocols in practice
- Dynamic injection of faultloads and workloads
- Integration of prototypes of BFT protocols
- Mechanisms for automatic deployment of experiments in cluster & cloud environments
- Performance monitoring & reporting
 - High-level statistics: Throughput, Latency
 - Low-level statistics: Network bandwidth usage, CPU utilization, Total number of retransmissions of each request, etc.

BFT-BENCH DESIGN PRINCIPLES

- Byzantine faults in consideration
 - Replica Crash
 - Message Delay
 - Network Flooding
 - System Overloading
- Faultload for injecting faults
 - Fault Trigger Time

general problem		
Practical BFT (PBFT)	First practical protocol	
Performance enhancement in fault free scenarios		
Speculation based	Zyzzyva, Zeno, ZZ	Ve
Quorum based	HQ, Q/U, Scrooge, Quorum	
Trusted Component based	BFT-TO, MinBFT, MinZyzzyva	
Switching based	Chain, Aliph, CheapBFT	
Trusted Client based	OBFT	
Performance enhancement in presence of faults		
Robust	Aardvark, Spinning, Prime, RBFT	

PROGRESS OF BFT BENCHMARKING TOOLS		
Achilles tool	Evaluates and detects trojan messages in PBFT	
Hermes framework	Evaluates BFTSmart protocol in presence of certain byzantine	

attacks

BFT-BENCH ARCHITECTURE

- Fault Type
- Fault Parameters

(fault location, delay time, message type, request message size, #clients)

- *BFT protocols in consideration*
 - *PBFT* A practical BFT protocol
 - *Chain* Performance enhancement in fault free conditions
 - *RBFT* Performance enhancement in presence of faults

PERFORMANCE EVALUATION: REPLICA CRASH

PERFORMANCE EVALUATION: MESSAGE DELAY

PERFORMANCE EVALUATION: NETWORK FLOODING

PERFORMANCE EVALUATION: DELAY WITH OVERLOADING

CONCLUSION & PERSPECTIVE

- Proposed BFT-Bench framework that aims to help researchers and practitioners to better analyze and evaluate the effectiveness and robustness of BFT systems.
- Experimental analysis demonstrates that BFT-Bench successfully compares various BFT protocols in face of many faulty behaviors & also exhibits the incapabilities of considered BFT prototypes. • We aim to extend the work to integrate and analyse other prototypes of BFT protocols with BFT-Bench.

