Using non-volatile RAM for inherent persistence and
fast recovery of an in-memory database

. : 4 N\
e Writing database checkpoints and 5 H(OH{ Layout Manager 7z pp—— N
logs to disk makes DBMS architec- e g R¥ (Attr. Vector) (Dict. Vector) | Main Index ! [TID Vectorj
tures more complex £ A R N -
p E _O_ é Main
- . . o R’ =1l AL N e e e R e e e e e N e e e e e e e e e e e e e R B . CID
e Recovering takes time in which the - & Storage O Delta [et J
DBMS is not fully functional T > | Rre Manager (Dict. Veetor) ~------- \
g CAttr Vector) i Delta Index ,‘
) o4 (Dict. Index - 5 End CID
e New data structures on non-volati- \ / Voot
le RAM (NVRAM) are persistent and DataperCOh;m; =
require only little recovery OR _ il D Y
e Hyrise-NV recovers in ~100ms,
virtually independent of the data- [(SEATEE) Transaction Managor (tidg) (Yeidy) (Deleted Rows)(Inserted Rows)
pase's size, excluding a reboot of (Commit Context List) Data per Transaction T

the operating system

Architecture of HYRISE-NV. Stored on (volatile) DRAM Optionally stored on NVRAM

TPC-C Recovery

Stored on NVRAM

160
— NVRAM (0% in Delta)
- NVRAM (10% in Delta)
- - NVRAM (20% in Delta)
140_ -+ NVRAM (50% in Delta) 1
g c c - . c — (0% i Ita)
What architecture is this based on? Tables are in a dictionary-encoded, colum- e vk em)
nar layout using a main-delta architecture and MVCC. Main and delta have at- 120y - Logeer (G0% n et -
. - . . . ogger % in Delta
tribute vectors with value ids pointing to the dictionary. Main dictionaries are — LoggerWithCheckpoint (0% in Delta)
sorted for fast reads. Inserts use a write-optimized delta. Delta dictionaries Y ool| T, LeggerwithCheckpoint (10% in Delta) |
(e - LoggerWithCheckpoint (20% in Delta)
are unsorted. G_J - LoggerWithCheckpoint (50% in Delta)
=
= 80} |
>
O]
>
How to guarantee ACID conformance? In addition to the attribute vector and o
the dictionaries, the MVCC information is stored on NVRAM. Thus, deleted and 40
uncommitted rows can be identified. To speed up the rollback, additional data)
is stored per transaction. For instant recovery, indexes are persisted on NV- 50
RAM but can also be rebuilt on restart. -
0 | | | | | | |
2 3 4 5 6 7 8 9

10

Recovery speed of different persistency mechanisms for
What data structures can be used for persistence? How are they adapted? n GB of data (less is better); NVRAM simulated

e Attribute, dictionary, and MVCC vectors: stored in contiguous NVRAM 300000 |-
e Indexes: new, optimized version of the STX B+-Tree with multiversioning.

Alternatively, concurrent hashmap adapted for NVRAM (the NVC-Hashmap) 250000

e Fences and cache line flushes guarantee that data reaches NVRAM 200000
150000

100000

How to recover in case of a crash? No logging and only minimal cleanup is
needed: For recovery, uncommitted transactions are reverted in the MVCC
vectors based on the Deleted / Inserted Rows information. Unfinished opera-
tions on the trees are rolled back.

Total Transactions per Minute

50000

0

5 Users 60 Users

300 Users

Runtime performance depending on number of users (more is
better); Hyrise-NV is bound by performance of flushes NV

Project Members

Hasso Plattner Institute: David Schwalb, Martin Faust, Markus Dreseler, Tim Berning
NetApp: Girish Kumar BK, Anusha S, Adolf Hohl, Gaurav Makkar, Parag Deshmukh

Hasso
Platther
Institut

NetAppTM IT Systems Engineering | Universitat Potsdam

