Using non-volatile RAM for inherent persistence and
fast recovery of an in-memory database
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How to guarantee ACID conformance? In addition to the attribute vector and o
the dictionaries, the MVCC information is stored on NVRAM. Thus, deleted and 40
uncommitted rows can be identified. To speed up the rollback, additional data )
is stored per transaction. For instant recovery, indexes are persisted on NV- 50
RAM but can also be rebuilt on restart. -
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Recovery speed of different persistency mechanisms for
What data structures can be used for persistence? How are they adapted? n GB of data (less is better); NVRAM simulated

e Attribute, dictionary, and MVCC vectors: stored in contiguous NVRAM 300000 |-
e Indexes: new, optimized version of the STX B+-Tree with multiversioning.

Alternatively, concurrent hashmap adapted for NVRAM (the NVC-Hashmap) 250000

e Fences and cache line flushes guarantee that data reaches NVRAM 200000
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How to recover in case of a crash? No logging and only minimal cleanup is
needed: For recovery, uncommitted transactions are reverted in the MVCC
vectors based on the Deleted / Inserted Rows information. Unfinished opera-
tions on the trees are rolled back.

Total Transactions per Minute

50000

0

5 Users 60 Users

300 Users

Runtime performance depending on number of users (more is
better); Hyrise-NV is bound by performance of flushes NV
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