
Kubernetes
The Path to Cloud Native

Eric Brewer
VP, Infrastructure

@eric_brewer

August 28, 2015
ACM SOCC

“Cloud	
 Na*ve”	
 Applica*ons	

Middle of a great transition
●  unlimited “ethereal” resources in the Cloud
●  an environment of services not machines
●  thinking in APIs and co-designed services
●  high availability offered and expected

Google confidential │ Do not
distribute

Google has been developing
and using containers to
manage our applications for
over 10 years.

Images by Connie
Zhou

2B launched per week
●  simplifies management
●  performance isolation
●  efficiency

VMs	
 vs.	
 Containers	
 	

Physical Processor

Virtual Processor

Operating System

Libraries

User Code Private
Copy

Shared

Virtual	
 Machines	

Physical Processor

Virtual Processor

Operating System

Libraries

User Code

Containers	

ISA

syscall

Containers: less overhead, enable more “magic”

Merging Two Kinds of Containers
Docker
●  It’s about packaging
●  Control:

o  packages
o  versions
o  (some config)

●  Layered file system
●  ⇒ Prod matches testing

Linux Containers
●  It’s about isolation
… performance isolation

●  not security isolation
… use VMs for that

●  Manage CPUs, memory,
bandwidth, …

●  Nested groups

Google	
 Pla=orm	
 Layering	

Infrastructure: Machines

App Engine: Language-based

Containers: Process-based

GCE

Kubernetes

GKE

GAE

Easy to use,
Flexible

Kubernetes:	
 Higher	
 level	
 of	
 Abstrac*on	

Don’t Worry About
●  OS details
●  Packages — no conflicts
●  Machine sizes (much)
●  Mixing languages
●  Port conflicts

Think About
●  Composition of services
●  Load-balancing
●  Names of services
●  State management
●  Monitoring and Logging
●  Upgrading

Evolu*on	
 is	
 the	
 Real	
 Value	

 Apps Structured as Independent Microservices
●  Encapsulated state with APIs (like “objects”)
●  Mixture of languages
●  Mixture of teams

Services are Abstract
●  A “Service” is just a long-lived abstract name
●  Varied implementations over time (versions)
●  Kubernetes routes to the right implementation

Service-­‐Oriented	
 Architecture?	

 This is similar, but a also new
Practical difference:
●  Simple network RPCs now common
●  JSON/http for REST (or gRPC for sessions)

Much better structure
●  Micro ⇒ smaller services and more of them
●  New in Kubernetes: modular sub-services

A Quick Look @ Your Code

& Your Code Community

Contribute

Customized Use Trade Secret

SOA… wrong granularity

Kubernetes: sub-structure
Don’t think of a container as the
boundary of your application

“A container is more like a class in an
object-oriented language.”

 --- Google’s Brendan Burns

Requirements...

Sharing among containers

●  Share namespaces (esp. PID, Network and IPC)
●  Share filesystems
●  (Often) Share a resource hierarchy

Requirements...

Atomic co-scheduling of containers

●  Composition requires co-location

Requirements...

Parameterization of containers

●  Configurable at runtime
●  Documented and discoverable

Pod

/data

Containers:
●  Handle package dependencies
●  Different versions, same machine
●  No “DLL hell”

Substructure	

python 3.4.2
glibc 2.21

MyService

python 2.7.9
glibc 2.19

MySQL Pods:
●  Co-locate containers
●  Shared volumes
●  IP address, independent port space
●  Unit of deployment, migration

Dependencies:	
 Services	

Service:
●  Replicated pods

o  Source pod is a template
●  Auto-restart member pods
●  Abstract name (DNS)
●  IP address for the service

o  in addition to the members
●  Load balancing among replicas

Load
Balancer

Service IP

Some Patterns...
Examples of how you use substructure

Pod

Sidecars

Application Container

node.js
Git
Synchronizer

Sidecars extend and enhance

Sidecar Container

Pod

Sidecar Pattern

Application Container

nginx
Git
Synchronizer

Sidecars extend and enhance

Sidecar Container

Ambassador Container

Pod

Ambassador Pattern

PHP app redis proxy

Ambassadors represent and present

localhost

Application Container

Redis
Shards

Pod

Adapter Pattern

redis redis exporter

Adapters normalize and abstract

localhost

Application Container Adapter Container
Monitoring
System

Other
adapters

Example: Rolling Upgrade with Labels

Pods:

Labels:
frontend

v1.2

frontend

v1.2

frontend

v1.2

frontend

v1.2

frontend

v1.3

frontend

v1.3

frontend

v1.3

frontend

v1.3

frontend

Replication
Controller

replicas:	
 4	

v1.2

Replication
Controller

replicas:	
 1	

v1.3

replicas:	
 3	
 replicas:	
 2	
 replicas:	
 3	
 replicas:	
 2	
 replicas:	
 1	
 replicas:	
 4	
 replicas:	
 0	

Summary
A new path for Cloud Native applications:
●  Collection of independent (micro) services
●  Each service evolves on its own

o  Scale as needed
o  Update as needed
o  Mix versions as needed

●  Pods provide critical structure
o  Template for service members
o  Group containers and volumes
o  Dedicated IP and thus port space

●  Containers are the new “classes”

BACKUP

Google confidential │ Do not
distribute

 How?

Implemented by a number of (unrelated) Linux APIs:

•  cgroups: Restrict resources a process can consume

•  CPU, memory, disk IO, ...

•  namespaces: Change a process’s view of the system

•  Network interfaces, PIDs, users, mounts, ...

•  capabilities: Limits what a user can do

•  mount, kill, chown, ...

•  chroots: Determines what parts of the filesystem a user can see

