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“Cloud	
  Na*ve”	
  Applica*ons	
  
Middle of a great transition 
●  unlimited “ethereal” resources in the Cloud 
●  an environment of services not machines 
●  thinking in APIs and co-designed services 
●  high availability offered and expected 
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Google has been developing 
and using containers to 
manage our applications for 
over 10 years. 
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2B launched per week 
●  simplifies management 
●  performance isolation 
●  efficiency 



VMs	
  vs.	
  Containers	
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Containers: less overhead, enable more “magic” 



Merging Two Kinds of Containers 
Docker 
●  It’s about packaging 
●  Control: 

o  packages 
o  versions 
o  (some config) 

●  Layered file system 
●  ⇒ Prod matches testing 
 

Linux Containers 
●  It’s about isolation 
… performance isolation 

●  not security isolation 
… use VMs for that 

●  Manage CPUs, memory, 
bandwidth, … 

●  Nested groups 



Google	
  Pla=orm	
  Layering	
  

Infrastructure:  Machines 

App Engine:  Language-based 

Containers:  Process-based  
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Easy to use, 
Flexible 



Kubernetes:	
  Higher	
  level	
  of	
  Abstrac*on	
  

Don’t Worry About 
●  OS details 
●  Packages — no conflicts 
●  Machine sizes (much) 
●  Mixing languages 
●  Port conflicts 

Think About 
●  Composition of services 
●  Load-balancing 
●  Names of services 
●  State management 
●  Monitoring and Logging 
●  Upgrading 



Evolu*on	
  is	
  the	
  Real	
  Value	
  
 Apps Structured as Independent Microservices 
●  Encapsulated state with APIs (like “objects”) 
●  Mixture of languages 
●  Mixture of teams 

Services are Abstract 
●  A “Service” is just a long-lived abstract name 
●  Varied implementations over time (versions) 
●  Kubernetes routes to the right implementation 



Service-­‐Oriented	
  Architecture?	
  
 This is similar, but a also new 
Practical difference: 
●  Simple network RPCs now common 
●  JSON/http for REST (or gRPC for sessions) 

Much better structure  
●  Micro ⇒ smaller services and more of them 
●  New in Kubernetes: modular sub-services 



  

A Quick Look @ Your Code 
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SOA… wrong granularity 



  

Kubernetes: sub-structure 
Don’t think of a container as the 
boundary of your application 
 
“A container is more like a class in an 
object-oriented language.” 
 
   --- Google’s Brendan Burns 
             



  

Requirements... 

Sharing among containers 
 
●  Share namespaces (esp. PID, Network and IPC) 
●  Share filesystems 
●  (Often) Share a resource hierarchy 
 



  

Requirements... 

Atomic co-scheduling of containers 
 
●  Composition requires co-location 
 
 



  

Requirements... 

Parameterization of containers 
 
●  Configurable at runtime 
●  Documented and discoverable 



Pod 

/data 

Containers: 
●  Handle package dependencies 
●  Different versions, same machine 
●  No “DLL hell” 

 

  

Substructure	
  

python 3.4.2 
glibc  2.21 

MyService 

python 2.7.9 
glibc  2.19 

MySQL  Pods: 
●  Co-locate containers 
●  Shared volumes 
●  IP address, independent port space 
●  Unit of deployment, migration 

 
  



Dependencies:	
  Services	
  
Service: 
●  Replicated pods 

o  Source pod is a template 
●  Auto-restart member pods 
●  Abstract name (DNS) 
●  IP address for the service 

o  in addition to the members 
●  Load balancing among replicas 
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Some Patterns... 
Examples of how you use substructure 
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Ambassador Container 

Pod 

Ambassador Pattern 

PHP app redis proxy 
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Pod 
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Example: Rolling Upgrade with Labels 

Pods: 

Labels: 
frontend 

v1.2 
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Summary 
A new path for Cloud Native applications: 
●  Collection of independent (micro) services 
●  Each service evolves on its own 

o  Scale as needed 
o  Update as needed 
o  Mix versions as needed 

●  Pods provide critical structure 
o  Template for service members 
o  Group containers and volumes 
o  Dedicated IP and thus port space 

●  Containers are the new “classes” 



BACKUP 
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  How?     

Implemented by a number of (unrelated) Linux APIs: 
 
•  cgroups: Restrict resources a process can consume 

•  CPU, memory, disk IO, ... 
 
•  namespaces: Change a process’s view of the system 

•  Network interfaces, PIDs, users, mounts, ... 
 
•  capabilities: Limits what a user can do 

•  mount, kill, chown, ... 
 
•  chroots: Determines what parts of the filesystem a user can see 

 


