
Sam Madden
madden@csail.mit.edu

Interactive Data Analytics: the
New Frontier

With a cast of many…

SOCC’15 Keynote – Kona, HI

BIG
MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Data

When Do You Have a Big Data Problem?

• Too many bytes (Volume)

• Too high a rate (Velocity)

• Too many sources (Variety)

Super Duper Indexes

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Real Challenge: Understanding Data

Main Memory DBsColumn Oriented DBsMap Reduce
What does the data look like?

Show me unusual patterns, events, or outliers?

Where are these anomalies and outliers coming from?

Quickly, as data changes, for arbitrary subsets of the data

Required interactivity is
poorly supported by today’s

data intensive systems

Three Interactive Analytics Data
Processing Tools We’ve Built
• MapD

– Interactive data exploration
• SeeDB

– Automatic visualization
• Scorpion

– Understanding “why” in aggregate queries

Can work w/ conventional databases but do better with
custom data processing engines

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Todd Mostak

MapD: Interactive
Large-Scale Visualization
using a GPU Database

w/

The Need for Interactive Analytics

• First step in analysis is browsing
–Often visualization

èad-hoc analytics, with millisecond response
times

WHAT IS MAPD?
MapD is:
� A GPU (Graphics Processing Unit)-

accelerated SQL column store database
� Scales to any number of Nvidia

GPUs
� A real-time map generator
� Uses GPUs to render point and

heatmaps of query results in
milliseconds

� A WMS web-server
� Can serve out of the box as the

backend for a web mapping client,
allowing for querying and
visualization of billions of features

� Fast and cost-effective
� 4 Nvidia commodity GPUs provide

provide over 12 Teraflops of
compute power and nearly 1 TB/sec
of memory bandwidth

147,201,658 tweets from Oct 1, 2012 to Nov 6, 2012

Relative intensity of “tornado” on Twitter (with point
overlay) from Febuary 29, 2012 to March 1, 2012

MapD: GPU Accelerated SQL Database
• Key insight: GPUs have enough

memory that a cluster of them can
store substantial amounts of data

• Not an accelerator, but a full blown
query processor!

• Massive parallelism enables
interactive browsing interfaces
– 4x GPUs can provide > 1 TB/sec of

bandwidth
– 12 Tflops compute
– Order of magnitude speedups over

CPUs, when data is on GPU

• “Shared nothing” arrangement

WHAT IS MAPD?
MapD is:
� A GPU (Graphics Processing Unit)-

accelerated SQL column store database
� Scales to any number of Nvidia

GPUs
� A real-time map generator
� Uses GPUs to render point and

heatmaps of query results in
milliseconds

� A WMS web-server
� Can serve out of the box as the

backend for a web mapping client,
allowing for querying and
visualization of billions of features

� Fast and cost-effective
� 4 Nvidia commodity GPUs provide

provide over 12 Teraflops of
compute power and nearly 1 TB/sec
of memory bandwidth

147,201,658 tweets from Oct 1, 2012 to Nov 6, 2012

Relative intensity of “tornado” on Twitter (with point
overlay) from Febuary 29, 2012 to March 1, 2012

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Gpu 1

Id lat lon text
0 31.2 -87.1 I lol
4 -17.1 46.3 I sing
8 43.1 -93.7 boston

Gpu 2

Id lat lon text
1 -41.3 16.4 @mit
5 53.1 14.3 haha
9 58.4 2.35 happy

Gpu N

Id lat lon text
3 37.9 -97.8 bieber
7 12.3 11.1 je ne
11 28.4 -81.7 pepsi

Hybrid On-Disk/In-Memory Column Store

 Id lat lon date sender text
 0 31.2 -87.1 10-11 bobama I lol
 1 -41.3 16.4 10-14 smadden @mit

SQL Query: SELECT sender, text FROM tweets WHERE lat
< 0.0 ORDER BY DIST(lon, lat, 31.3, 3.0)

Parser

Optimizer

Executor
Row Ids

 4
 1

Join

sender text
bspears I sing

smadden @mit

ANATOMY OF A QUERY

Next Steps
• Scale out to many

nodes, automate
layout algorithms

• Add various
advanced analytics
(e.g., machine
learning algorithms)

• Generalize
visualization
beyond maps

Three Interactive Analytics Data
Processing Tools We’ve Built
• MapD

– Interactive data exploration
• SeeDB

– Automatic visualization
• Scorpion

– Understanding “why” in aggregate queries

Can work w/ conventional databases but do better with
custom engines

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

SeeDB: Visual Recommendations

w/ Manasi Varak, Aditya Parameswaran, Neoklis Polyzotis

Huge number of possible
visualizations

Recommending Visualizations
• How to find relevant visualizations?

– Need a utility metric
– Axes: Data, User Preferences, Aesthetics

• Goal: interactive recommendations?
– Scale to large number of rows
– Manage curse of dimensionality

SeeDB Visualizations

• Vi = (d : dimension, m : measure, f : aggregate)
• AGGREGATE + GROUP BY queries

SELECT d, f(m) FROM table GROUP BY d
WHERE selection_predicate

Naïvely evaluated through sequential scans of dataset

Result: bar chart

Deviation-based Utility Metric

Find visualizations (d, f(m) sets) such that the difference between the
query with the selection_predicate and with no predicate is maximized

Recall our query template:
SELECT d, f(m) FROM table GROUP BY d
WHERE selection_predicate

Example Recommendation
(Census Example)

SELECT gender, AVG(capital-gain)
WHERE marital-status = NEVER_MARRIED
GROUP BY gender

Never-
Married

Whole data
Set

Bar charts

Focus on views that
show high variance vs
underlying data set

Huge
space of
related
problems!!!

Challenge and Solution Sketch
• Exponential number of possible visualizations

– Can plot any set of attributes against any other set!

• Solutions:
– Several optimizations to batch queries together, to explore the

search space more efficiently
– Algorithms to prune space of visualizations

* Idea: Quickly discarding those of low utility
* Evaluate visualizations on a small sample of data

• Discard ones that perform poorly, and repeat

Time to Find Top 10 Visualizations

SeeDB returns results in < 4 s for all data sets
vs > 700s for naïve approach

BANK DIAB AIR AIR10

5.6

0.6
0.4

0.8

1s1s1s1s

12.6

0.8

0.2

1.11s1s1s1s

16.8

3.9

11.9

690

1s1s1s1s

23.9
32.6

6897 125

1s1s1s1s
1

10

100

la
te

nc
y

(s
)

opt NO_OPT SHARING COMB COMB_EARLY

BANK DIAB AIR AIR10

5.6

0.6
0.4

0.8

1s1s1s1s

12.6

0.8

0.2

1.11s1s1s1s

16.8

3.9

11.9

690

1s1s1s1s

23.9
32.6

6897 125

1s1s1s1s
1

10

100

la
te

nc
y

(s
)

opt NO_OPT SHARING COMB COMB_EARLY

AIR: 10 GB flight
dataset
DIAB: 1 GB diabetes
patient dataset
BANK: 600 MB
banking dataset

SeeDB: Visual Recommendations

Users feel that tool
greatly improves their
ability to find interesting
trends

Three Interactive Analytics Data
Processing Tools We’ve Built
• MapD

– Interactive data exploration
• SeeDB

– Automatic visualization
• Scorpion

– Understanding “why” in aggregate queries

Can work w/ conventional databases but do better with
custom engines

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Scorpion
• After SeeDB: you found something interesting, now

what?

• Common problem: outliers
• Need: a method to discover why outliers existEugene Wu

Definition of Why
Given an outlier group, find a predicate over the inputs
that makes the output no longer an outlier.

i = Input Data

0

1

2

3

4

5

China Japan Taiwan US

Output Visualization

p

Outlier Group

p = predicate

Definition of Why
Given an outlier group, find a predicate over the inputs
that makes the output no longer an outlier.

i = Input Data

p

p = predicate

0

1

2

3

4

5

China Japan Taiwan US

Output Visualization

Definition of Why
Given an outlier group, find a predicate over the inputs
that makes the output no longer an outlier.

i = Input Data

p

Removing the predicate makes US no longer an outlier

What are common properties of those records? {Warren Buffet, Tim
Cook}
p: Job = CEO

0

1

2

3

4

5

China Japan Taiwan US

Output Visualization

Scorpion Demo

Existing Data Intensive Systems
are a Poor Fit For Interactive
Analytic Applications

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE
LABORATORY

Example: relational databases
• Not optimized for interactivity

– a query that runs in a few seconds is "fast”
– disk-optimized (big pages, buffer pool)
– ok for the optimizer to work for hundreds of milliseconds
– synchronous APIs (JDBC)

• Designed to perform well on a known workload
– careful physical tuning

• Designed to be the “system of record”
– è approximation bad!

• (Traditional) focus on point lookups & transactional updates
– these hurt scan (analytic) performance

• Similar statements can be made about Hadoop & Spark
MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE
LABORATORY

All 3 examples employ
custom data processing
layers to circumvent
these issues

Four Research Opportunities
1. Move away from “index first” and up-front load

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Move away from index first
• TPC-H Scale 10 Load Times on Postgres

(~10 GB data, on 4 core MacBook Pro w/ SSD)
Load: 7 mins (23 MB/sec)
Creating keys: 13 mins
Indexing: 18 mins

Untenable if just doing a first pass on the data

Opportunity: index & partition data on the fly
(Some work on avoiding loading too – see, e.g., Alagiannis et al,
“NoDB”, SIGMOD 2012)

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Example: Database cracking

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Idreos et al. “Database Cracking”, CIDR 2007.

Index attributes as they
are accessed, instead of
up front!

Example: Adaptive Partitioning

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

• Data partitioning is key to good performance in
modern parallel data systems
– Read just the partitions you need
– Partition is expensive (requires shuffling data)

• Challenge: how to partition?
– Typical choice: partition on frequently queried attributes
– What if those aren’t known?

• Idea: adaptively partition data as it is queried
w/ Alekh Jindal, Qui Nguyen, Anil Shanbhag , Aaron Elmore, Divy
Agarawal, Jorge Quiane Ruiz

Example: Adaptive Partitioning

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

a1b1

a2b1

a1b2

a2b2

Partition
on A

Partition
on A,B

Partition
on E,F,G,H

Replica 1

Partition
on I,J,K,L

a1b1c1

a2b1d1

a1b2c1

a2b2d2

Partition on
A,B,C,D

a1

a2

D

Input
Dataset

Nested
Partitioning

Partial
Partitioning

Per-replica
Partitioning

a1b1c2

a1b2c2

a2b1d2

a2b2d1

Replica 2

e1f1g1

e2f1h1

e1f2g1

e2f2h2

e1f1g2

e1f2g2

e2f1h2

e2f2h1

Replica 3

i1j1k1

i2j1l1

i1j2k1

i2j2l2

i1j1k2

i1j2k2

i2j1l2
i2j2l1

A

B

B

C

D

C

D

Whenever a query arrives, choose whether we should re-partition a block
or not

Four Research Opportunities
1. Move away from “index first”
2. Build analytic engines for main memory

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Analytic engines for main
memory: Voodoo Parallel IL
with Oscar Moll, Holger Pirk, Yunming Zhang, Saman Amarasinghe, Matei Zaharia

• To optimize across libraries automatically, need to
express them in a common intermediate language

• Design a data-parallel IL that:
– Captures common data processing tasks
– Allows rich transformations at the level of the IL
– Maps efficiently to hardware (clusters, CPU, GPU)

• Focus on main memory & interactive performance

Related: Hyper (TU Munich)

The Goal

machine
learning

clusters CPUs GPUs

parallel IL

SQL graph

transformations

Example Transformations:
Fusing

// library function
def scoreFit(data: vec[vec[float]], param: vec[float]) = {

sum = [0, 0]
for (d <- data) { sum += dot(d, param)**2 }

}

// user code
params = [[1, 1], [3, 2]]
for (p <- params) { scoreFit(data, param) }

for (p <- params) {
sum = [0, 0]
for (d <- data) {

sum += dot(d, p) ** 2
}

}

sums = [[0, 0], [0, 0]]
for (d <- data) {

for ((p, i) <- params) {
sum[i] += dot(d, p) ** 2

}
}

Example Transformations:
Data Representation

// select sum(salary) from users where state == “MA”
def query(users: vec[{name:str, salary:int, state:str}]) = {

sum = 0
for (u <- users) {

if (u.state == “MA”) { sum += u.salary }
}

}

// column-oriented execution
def query(name: vec[str], salary: vec[int], state: vec[str]) = {

sum = 0
for (i <- 0..len(users)) {

if (state[i] == “MA”) { sum += salary[i] }
}

}

Voodoo Backend
• Generates parallel code for a variety of hardware
• Takes as input an intermediate representation of

vectors

• Hardware abstracted by vector size and number of
parallel units
– Works for GPU, multicore, manycore

• Currently acts as a drop in backend for MonetDB

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

// column-oriented execution
def query(name: vec[str], salary: vec[int], state: vec[str]) = {

sum = 0
for (i <- 0..len(users)) {

if (state[i] == “MA”) { sum += salary[i] }
}

}

Voodoo Performance

Table 1

ms Frame rate

MonetDB
on Server

290 3.44827586206897

Voodoo on  
 Server

73 13.6986301369863

Hyper on  
 Server

54 18.5185185185185

Theoretical  
Limit  
on Server

40 25

Voodoo On  
Macbook

300 3.33333333333333

Macbook  
CPU Limit

134.0625 7.45920745920746

Macbook  
GPU Limit

53.625 18.6480186480186

Macbook
 GPU+CPU

38.3035714285714 26.1072261072261
0

7.5

15

22.5

30

MonetDB
on Server

Voodoo on  
 Server

Hyper on  
 Server

Theoretical  
Limit  

on Server

Voodoo On  
Macbook

Macbook  
CPU Limit

Macbook  
GPU Limit

Macbook
 GPU+CPU

Frame rate

0

75

150

225

300

MonetDB
on Server

Voodoo on  
 Server

Hyper on  
 Server

Theoretical  
Limit  

on Server

Voodoo On  
Macbook

Macbook  
CPU Limit

Macbook  
GPU Limit

Macbook
 GPU+CPU

ms

�1MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Milliseconds

TPC-H Query 6, Scale Factor 10 (6 GB scan)

Table 1

ms Frame rate

MonetDB
on Server

290 3.44827586206897

Voodoo on  
 Server

73 13.6986301369863

Hyper on  
 Server

54 18.5185185185185

Theoretical  
Limit  
on Server

40 25

Voodoo On  
Macbook

300 3.33333333333333

Macbook  
CPU Limit

134.0625 7.45920745920746

Macbook  
GPU Limit

53.625 18.6480186480186

Macbook
 GPU+CPU

38.3035714285714 26.1072261072261
0

7.5

15

22.5

30

MonetDB
on Server

Voodoo on  
 Server

Hyper on  
 Server

Theoretical  
Limit  

on Server

Voodoo On  
Macbook

Macbook  
CPU Limit

Macbook  
GPU Limit

Macbook
 GPU+CPU

Frame rate

0

75

150

225

300

MonetDB
on Server

Voodoo on  
 Server

Hyper on  
 Server

Theoretical  
Limit  

on Server

Voodoo On  
Macbook

Macbook  
CPU Limit

Macbook  
GPU Limit

Macbook
 GPU+CPU

ms

�1

Frame Rate

Postgres:
28 seconds

Four Research Opportunities
1. Move away from “index first”
2. Build analytic engines for main memory
3. Treat approximation as a first class citizen

– Exploit visual properties

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Approximate Data Systems
• By operating on samples of data, can get big

speedups
– Example: BlinkDB

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

BlinkDB
Exploratory analytics workload
42 queries, each of aggregates, groups,

and filters on a different subset of attributes.

2.5 TB 7.5 TB
BlinkDB (1% error) 9 10
Hive 2000 6000

1

10

100

1000

10000
Ru

nt
im

e
(s

, l
og

 s
ca

le
)

Runtime Vs. Dataset Size

Approximate Data Systems
• By operating on samples of data, can get big

speedups
– Example: BlinkDB

• Historically mildly popular database research topic
– AQUA, Control, SQL Server
– Never seen much uptake

* DB users aren’t comfortable with “close enough”
• Challenges:

– Queries over rare subgroups
* BlinkDB stratifies on popular attributes

– How to compute and maintain random samples
– What type of sampling to use?

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Visually-aware sampling

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Correct ordering property

Kim et al, Rapid Sampling For Visualizations with Order Guarantees VLDB 2015

Algorithm sketch:
sample groups
whose confidence
intervals overlap;
don’t sample
others

Visual Sampling Performance on Flight Dataset
Average Delay by Airline

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

5-6x speedup over a BlinkDB-like system

15.3 16.1

74.1 77.5

0
10
20
30
40
50
60
70
80
90

1 B records 10 B records

Ti
m

e
(s

)

IFocusR (ours) Conventional Sampling

Visual sampling: don’t paint every pixel

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Four Research Opportunities
1. Move away from “index first”
2. Build analytic engines for main memory
3. Treat approximation as a first class citizen

– Exploit visual properties
4. Develop new asynchronous interfaces

– “Linked views”, where V1 updates when V2 changes
– Incremental refresh of visualizations

* Ex. Meteor Framework: “optimistic UI”

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE LABORATORY

Interactive analytics is a new frontier

Huge performance gulf between current data processing
systems (cloud-based or otherwise) and what is required,
even on simple tasks

As demand for complex analytics and automated
inferences/insight grows, this gap will get worse

This creates research opportunities
• In memory engines
• Visually aware approximate processing
• Load less, query more
• New interface abstractions

Conclusion

