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When Do You Have a Big Data Problem?

• Too many bytes (Volume)

• Too high a rate (Velocity)

• Too many sources (Variety)



Super Duper Indexes
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Real  Challenge:  Understanding  Data

Main Memory DBsColumn Oriented DBsMap Reduce
What does the data look like?

Show me unusual patterns, events, or outliers?

Where are these anomalies and outliers coming from? 

Quickly, as data changes, for arbitrary subsets of the data

Required interactivity is 
poorly supported by today’s 

data intensive systems



Three Interactive Analytics Data 
Processing Tools We’ve Built
• MapD

– Interactive data exploration
• SeeDB

– Automatic visualization
• Scorpion

– Understanding “why” in aggregate queries

Can work w/ conventional databases but do better with 
custom data processing engines
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Todd Mostak 

MapD: Interactive 
Large-Scale Visualization
using a GPU Database

w/



The Need for Interactive Analytics

• First step in analysis is browsing
–Often visualization

èad-hoc analytics, with millisecond response 
times

WHAT IS MAPD? 
MapD is: 
�  A GPU (Graphics Processing Unit)-

accelerated SQL column store database 
� Scales to any number of Nvidia 

GPUs  
� A real-time map generator  
� Uses GPUs to render point and 

heatmaps of query results in 
milliseconds 

� A WMS web-server 
� Can serve out of the box as the 

backend for a web mapping client, 
allowing for querying and 
visualization of billions of features 

� Fast and cost-effective 
� 4 Nvidia commodity GPUs provide 

provide over 12 Teraflops of 
compute power and nearly 1 TB/sec 
of memory bandwidth 

 
 

 
 

147,201,658 tweets from Oct 1, 2012 to Nov 6, 2012 

Relative intensity of “tornado” on Twitter (with point 
overlay) from Febuary 29, 2012 to March 1, 2012 



MapD: GPU Accelerated SQL Database
• Key insight:  GPUs have enough 

memory that a cluster of them can 
store substantial amounts of data

• Not an accelerator, but a full blown 
query processor!

• Massive parallelism enables 
interactive browsing interfaces
– 4x GPUs can provide > 1 TB/sec of 

bandwidth
– 12 Tflops compute
– Order of magnitude speedups over 

CPUs, when data is on GPU

• “Shared nothing” arrangement
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Gpu 1 
___________________________ 

Id      lat      lon       text 
0      31.2   -87.1    I lol 
4     -17.1    46.3   I sing 
8 43.1   -93.7   boston 
             

Gpu 2 
_____________________________ 
Id      lat      lon       text 
1 -41.3  16.4    @mit 
5  53.1  14.3    haha 
9      58.4   2.35   happy 
             

Gpu N 
______________________________ 
Id      lat      lon       text 
3 37.9    -97.8    bieber 
7     12.3    11.1    je ne 
11   28.4    -81.7  pepsi 
             

Hybrid On-Disk/In-Memory Column Store 
_______________________________________________________ 

  Id     lat     lon    date      sender       text           
    0      31.2   -87.1   10-11     bobama       I lol 
    1      -41.3   16.4   10-14     smadden    @mit        
  

SQL Query: SELECT sender, text FROM tweets WHERE lat 
< 0.0 ORDER BY  DIST(lon, lat, 31.3, 3.0) 

Parser 

Optimizer 

Executor 
Row Ids 

    4 
    1 

Join 

sender text 
bspears I sing 

smadden @mit 

ANATOMY OF A QUERY 



Next Steps
• Scale out to many 

nodes, automate 
layout algorithms

• Add various 
advanced analytics 
(e.g., machine 
learning algorithms)

• Generalize 
visualization 
beyond maps



Three Interactive Analytics Data 
Processing Tools We’ve Built
• MapD

– Interactive data exploration
• SeeDB

– Automatic visualization
• Scorpion

– Understanding “why” in aggregate queries

Can work w/ conventional databases but do better with 
custom engines
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SeeDB: Visual Recommendations

w/ Manasi Varak, Aditya Parameswaran, Neoklis Polyzotis



Huge number of possible 
visualizations



Recommending Visualizations
• How to find relevant visualizations?

– Need a utility metric
– Axes: Data, User Preferences, Aesthetics

• Goal: interactive recommendations?
– Scale to large number of rows
– Manage curse of dimensionality



SeeDB Visualizations

• Vi = (d : dimension, m : measure, f : aggregate)
• AGGREGATE + GROUP BY queries

SELECT d, f(m) FROM table GROUP BY d 
WHERE selection_predicate

Naïvely evaluated through sequential scans of dataset

Result: bar chart



Deviation-based Utility Metric

Find visualizations (d, f(m) sets) such that the difference between the 
query with the selection_predicate and with no predicate is maximized

Recall our query template:
SELECT d, f(m) FROM table GROUP BY d 
WHERE selection_predicate



Example Recommendation 
(Census Example)

SELECT gender, AVG(capital-gain) 
WHERE marital-status = NEVER_MARRIED
GROUP BY gender

Never-
Married

Whole data 
Set

Bar charts

Focus on views that 
show high variance vs 
underlying data set

Huge 
space of 
related 
problems!!!



Challenge and Solution Sketch
• Exponential number of possible visualizations

– Can plot any set of attributes against any other set!

• Solutions: 
– Several optimizations to batch queries together, to explore the 

search space more efficiently
– Algorithms to prune space of visualizations

* Idea: Quickly discarding those of low utility
* Evaluate visualizations on  a small sample of data

• Discard ones that perform poorly, and repeat



Time to Find Top 10 Visualizations

SeeDB returns results in < 4 s for all data sets
vs > 700s for naïve approach
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AIR: 10 GB flight 
dataset
DIAB: 1 GB diabetes 
patient dataset
BANK: 600 MB 
banking dataset



SeeDB: Visual Recommendations

Users feel that tool 
greatly improves their 
ability to find interesting 
trends



Three Interactive Analytics Data 
Processing Tools We’ve Built
• MapD

– Interactive data exploration
• SeeDB

– Automatic visualization
• Scorpion

– Understanding “why” in aggregate queries

Can work w/ conventional databases but do better with 
custom engines
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Scorpion
• After SeeDB:  you found something interesting, now 

what?

• Common problem: outliers
• Need: a method to discover why outliers existEugene Wu



Definition of Why
Given an outlier group, find a predicate over the inputs 
that makes the output no longer an outlier. 

i = Input Data
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Definition of Why
Given an outlier group, find a predicate over the inputs 
that makes the output no longer an outlier. 

i = Input Data

p

Removing the predicate makes US no longer an outlier

What are common properties of those records?  {Warren Buffet, Tim 
Cook}
p: Job = CEO
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Output Visualization



Scorpion Demo



Existing Data Intensive Systems 
are a Poor Fit For Interactive 
Analytic Applications

MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE 
LABORATORY



Example: relational databases
• Not optimized for interactivity 

– a query that runs in a few seconds is "fast”
– disk-optimized (big pages, buffer pool) 
– ok for the optimizer to work for hundreds of milliseconds
– synchronous APIs (JDBC)

• Designed to perform well on a known workload
– careful physical tuning

• Designed to be the “system of record”
– è approximation bad!

• (Traditional) focus on point lookups & transactional updates
– these hurt scan (analytic) performance

• Similar statements can be made about Hadoop & Spark
MIT COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE 
LABORATORY

All 3 examples employ 
custom data processing 
layers to circumvent 
these issues



Four Research Opportunities
1. Move away from “index first” and up-front load
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Move away from index first
• TPC-H Scale 10 Load Times on Postgres

(~10 GB data, on 4 core MacBook Pro w/ SSD)
Load: 7 mins (23 MB/sec)
Creating keys: 13 mins
Indexing: 18 mins

Untenable if just doing a first pass on the data

Opportunity: index & partition data on the fly
(Some work on avoiding loading too – see, e.g., Alagiannis et al, 
“NoDB”, SIGMOD 2012)
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Example: Database cracking
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Idreos et al. “Database Cracking”, CIDR 2007. 

Index attributes as they 
are accessed, instead of 
up front!



Example: Adaptive Partitioning
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• Data partitioning is key to good performance in 
modern parallel data systems
– Read just the partitions you need
– Partition is expensive (requires shuffling data)

• Challenge: how to partition? 
– Typical choice: partition on frequently queried attributes
– What if those aren’t known?

• Idea: adaptively partition data as it is queried
w/ Alekh Jindal, Qui Nguyen, Anil Shanbhag , Aaron Elmore, Divy
Agarawal, Jorge Quiane Ruiz



Example: Adaptive Partitioning
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a1b1

a2b1

a1b2

a2b2

Partition 
on A

Partition 
on A,B

Partition 
on E,F,G,H

Replica 1

Partition 
on I,J,K,L

a1b1c1

a2b1d1

a1b2c1

a2b2d2

Partition on 
A,B,C,D

a1

a2

D

Input 
Dataset

Nested 
Partitioning

Partial 
Partitioning

Per-replica 
Partitioning
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Replica 2
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Whenever a query arrives, choose whether we should re-partition a block 
or not



Four Research Opportunities
1. Move away from “index first”
2. Build analytic engines for main memory
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Analytic engines for main 
memory: Voodoo Parallel IL
with Oscar Moll, Holger Pirk, Yunming Zhang, Saman Amarasinghe, Matei Zaharia

• To optimize across libraries automatically, need to 
express them in a common intermediate language

• Design a data-parallel IL that:
– Captures common data processing tasks
– Allows rich transformations at the level of the IL
– Maps efficiently to hardware (clusters, CPU, GPU)

• Focus on main memory & interactive performance

Related: Hyper (TU Munich)



The Goal

machine 
learning

clusters CPUs GPUs

parallel IL

SQL graph

transformations



Example Transformations: 
Fusing

// library function
def scoreFit(data: vec[vec[float]], param: vec[float]) = {

sum = [0, 0]
for (d <- data) { sum += dot(d, param)**2 }

}

// user code
params = [[1, 1], [3, 2]]
for (p <- params) { scoreFit(data, param) }

for (p <- params) {
sum = [0, 0]
for (d <- data) {

sum += dot(d, p) ** 2
}

}

sums = [[0, 0], [0, 0]]
for (d <- data) {

for ((p, i) <- params) {
sum[i] += dot(d, p) ** 2

}
}



Example Transformations: 
Data Representation

// select sum(salary) from users where state == “MA”
def query(users: vec[{name:str, salary:int, state:str}]) = {

sum = 0
for (u <- users) {

if (u.state == “MA”) { sum += u.salary }
}

}

// column-oriented execution
def query(name: vec[str], salary: vec[int], state: vec[str]) = {

sum = 0
for (i <- 0..len(users)) {

if (state[i] == “MA”) { sum += salary[i] }
}

}



Voodoo Backend
• Generates parallel code for a variety of hardware
• Takes as input an intermediate representation of 

vectors

• Hardware abstracted by vector size and number of 
parallel units
– Works for GPU, multicore, manycore

• Currently acts as a drop in backend for MonetDB
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// column-oriented execution
def query(name: vec[str], salary: vec[int], state: vec[str]) = {

sum = 0
for (i <- 0..len(users)) {

if (state[i] == “MA”) { sum += salary[i] }
}

}



Voodoo Performance

Table 1
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Milliseconds

TPC-H Query 6, Scale Factor 10 (6 GB scan)
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Four Research Opportunities
1. Move away from “index first”
2. Build analytic engines for main memory
3. Treat approximation as a first class citizen

– Exploit visual properties
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Approximate Data Systems
• By operating on samples of data, can get big 

speedups
– Example: BlinkDB
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BlinkDB
Exploratory  analytics  workload
42  queries,  each  of  aggregates,  groups,  

and  filters  on  a  different  subset  of  attributes.
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Approximate Data Systems
• By operating on samples of data, can get big 

speedups
– Example: BlinkDB

• Historically mildly popular database research topic
– AQUA, Control, SQL Server
– Never seen much uptake

* DB users aren’t comfortable with “close enough”
• Challenges:

– Queries over rare subgroups
* BlinkDB stratifies on popular attributes

– How to compute and maintain random samples
– What type of sampling to use?
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Visually-aware sampling
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Correct ordering property

Kim et al, Rapid Sampling For Visualizations with Order Guarantees VLDB 2015

Algorithm sketch: 
sample groups 
whose confidence 
intervals overlap;  
don’t sample 
others



Visual Sampling Performance on Flight Dataset
Average Delay by Airline
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5-6x speedup over a BlinkDB-like system
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Visual sampling: don’t paint every pixel
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Four Research Opportunities
1. Move away from “index first”
2. Build analytic engines for main memory
3. Treat approximation as a first class citizen

– Exploit visual properties
4. Develop new asynchronous interfaces

– “Linked views”, where V1 updates when V2 changes
– Incremental refresh of visualizations

* Ex. Meteor Framework: “optimistic UI”
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Interactive analytics is a new frontier

Huge performance gulf between current data processing 
systems (cloud-based or otherwise) and what is required, 
even on simple tasks

As demand for complex analytics and automated 
inferences/insight grows, this gap will get worse

This creates research opportunities
• In memory engines
• Visually aware approximate processing
• Load less, query more
• New interface abstractions

Conclusion


